S.E. (Automobile \& Mechanical Engineering) (Insem) FLUID NECHANICS
 (2019 Pattern) (Semester - II) (202049)

Time : 1 Hour]
[Max. Marks : 30
Instructions to the candidates:

1) Answer Q. 7 or $Q .2, ~ Q .3$ or $Q .4$
2) Neat Diagrams must be drawn wherever necessary.
3) Assume Switable data if necessary
4) Use of Non-Programmable scientific calculators is allowed

Q1) a) Explainfluid as continuum.
b) Determine the specific weight, specific mass, specific volume and relative Odensity of liquid having a volume of $6 \mathrm{~m}^{2}$ and weight of 40 kN .
c) Derive an equation of intensity of pressure for (i) Soap bubble and (ii)Water jet.

Q2) a) Explain Rheological djagram.
b) The capillary rise in the glass tube is not to exceed 0.2 mm of water. Determine its minimum size if the surface tension for water in contact with air is $0.0725 \mathrm{~N} / \mathrm{m}$.
[4]
c) A cylinder of 0.30 m diameter rotates concentrically inside a fixed cylinder of 0.31 m diameter. Both the cylinders are 0.3 m long. Determine the viscosity of the liquid which fills the space between the cylinders if a torque of 0.98 Nm is requied to rotate the innercylinder at 60 rpm .

Q3) a) A simple U-tube manometer is installed acrosscan orifice meter.The manometer is filled with mercury of Specific gravity 13.6 and the liquid above the mercury is carbon tetrachloride of specific gravity 1.6. The manometer reads 200 mm . Determine the pressure difference over the manometer in $\mathrm{N} / \mathrm{m}^{2}$.
b) Explain Stability conditions of floating bodies.
c) Derive an expression for determination of metacentric height of floating bodies by analytical method.

Q4) a) State and prove Hydrostatics law.
b) Explain withneat sketch Inverted U-tube differential manometer.
c) A triangular platé of 1 m base and 1.5 m altitude is immersed in water. The plane of platecinclined at 30° With free water surface and base is parallel to and at adepth of 2 m from free water surface. Determine total pressure on the plate and the position of center of pressure.

* * *

