S.E. (Automobile \& Mechanical Engg.) CUUIDMECHANICS
 (2019 Paternt) (Semester - IV) (202049)

Time: $2^{1 ⁄ 2} 2$ Hours]
[Max. Marks : 70

Instructions to the candidates:

1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Assumie suitable data, if necessary.
5) Use of electronic pocket calculator is allowed.

Q1) a) Define following terms:
i) Path line (ii) Stream line
iii) Streak line
iv) Stream tube
b) Distinguish between:
i) Uniform \& Non uniform flow
ii) Steady \& Unsteady flow
iii) Rotational \& Ifotational flow
c) The velocity potential function is given by $\phi=\left(x^{2}-y^{2}\right)$ find the velocity vector for the given fluid flow. Also show that ϕ represents possible case of flow.

Q2) a) Explain following properties with their mathematical properties:
i) Velocity potential
ii) Stream function
b) Derive continuity equation for 1D flow aleng streamline.
c) The velocity vector in the fluid flow is give by $\mathrm{V}=2 x^{3} \hat{i}-5 x^{2} y \hat{j}+2 t \hat{k}$. Obtain velocity \& acceleration at point $(2,1,0)$ at time $t=1 \mathrm{~s}$.

Q3) a) Differentiate between venturimeter \& orificemeter.
b) State \& Derive Bernoulli's equation along streamline.
c) An oil of specific gravity 0.9 viscosity 10 poise is flowing through a pipe of diameter 110 mm . The velocity at the center of pipe is $2 \mathrm{~m} / \mathrm{s}$ find:
i) The pressure gradient in the direction of flow.
ii) Shear stress at the pipe wall
iii) Velocity'at adistance 30 mm from pipe wall

OR

Q4) a) Show that the value of coefficient of friction for viscous flow through the circular pipe is given by $f=16 / \mathrm{Re}$.
b) Derive an expression of velocity \& shear stress distríbution for laminar flow through pipe.
c) A conical tube of length 3 m is fixed vertically with its smaller end upwards. The velocity of flow at smaller end is $4 \mathrm{~m} / \mathrm{s}$; while at its lower end is $2 \mathrm{~m} / \mathrm{s}$. The pressure head athe smalter end is 2 m of liquid. The loss of head through the pipe is $0.95\left(v_{1}-v_{2}\right)^{2} / 2 \mathrm{~g}$ where v_{1} velocity at smaller end \& v_{2} velocity at lower end. Determine the pressure head at the lower end. Flow takes place in downward direction.

Q5) a) Explain the following term with their graphical representation:
i) Hydraulic Grade line
ii) Total Energy line
b) What is siphon? Explain its working along with the diagram? [6]
c) Find the displacement thickness, the momentum thicknessfor the velocity distribution in the boundary layer is given by $\frac{u}{v}=2(y / \delta) \cdot(y / \delta)^{2}$.

OR

Q6) a) Define the following term with brief explanations:
i) Boundary layer
ii) Boundary layer thickness
iii) Drag
iv) Lift
b) What do you mean by Boundary layer separation? Write the methods of preventing the separation of boundary layer.
c) A pipe of diameter of 0.4 m and length 2000 m is connected to a reservoir at one end. The otherend of the pipe is connected to a junction from which two pipes of lengths 1000 m and diameter 3000 m are parallel. These parallel pipes are connected to another reservoir, which is having level of water 10 m below the water level of the above reservoir. Determine the -rotal discharge if $f=0.015$. Neglect minor losses.

Q7) a) State and,explayn Buckingham's π-theorem. What do you mean by repeating variables? How are repeating variables selected in Dimensional Aparysis?
b) The Frictional Torque of disc of diameter D rotating at a speed N in a fluid $\sigma 0^{\circ}$ viscosity μ and density ρ in a turbulent flow is given by D $D^{5} N^{2} \rho \phi\left[\frac{\mu}{D^{2} N \rho}\right]$.

Q8) a) Explain the following Dimensionlesonumber along with mathematical expressions :
i) Reynolds Number
ii) Froude's Number
iii) Euler's Number
iv) Weber Number
b) A Fluid of density ρ_{0} and viscosity μ, flows at a velocity v through a circular pipe of diangeter D. By using Buckingham's π-theorem. Prove that shear stress τ_{0} at wall is given by $\left.\tau_{0}=\rho v^{2} \phi \frac{\rho \nu D}{\mu}\right]$.

\&みみ

