S.E. (Automobile \& Mechanical/Automation \& Robotics/
 Mechatronics/Mechanical/Mechanical Sandwich)

ENGINEERINGGMATHEMATICS - III
 (2019 Pattern) (Semester - IV) (207002)

Time : $2^{1 ⁄ 2}$ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Question No. 1 is compulsory. Solve Q. 2 or Q.3, Q. 4 or Q.5, Q. σ or Q.7, Q. 8 or Q.9.
2) Neat diagrams must be drawn whenever necessary.
3) Figures to the right indicate full marks.
4) Use of eleetronic pocket calculator is allowed.
5) Assume suitable data, if necessary.

Q1) a) The first four moments of a distribution about mean of the variable are 0 , 2, 0 and 11. Then $\beta_{2}=$
i) 2.5
ii) $\quad 2.3999$
iii) 2.75
iv) 0.5987
b) If $\overline{\mathrm{F}}=\left(x^{2} y\right) \hat{i}+(x y z) \hat{j}+\left(\beta^{2} y\right) \hat{k}$ then curl $\overline{\mathrm{F}}$ at $(1,1,2)$ is
i) $5 \hat{i}+\hat{j}$
ii) $3 \hat{i}+\hat{j}+\hat{k}$
iii) $3 \hat{i}+\hat{k}$
iv) $3 \hat{i}+\hat{j}$
c) The most general solutionof the partial differential equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} \frac{u}{\partial x^{2}}}{}$ representing heat floys along a bar is
i) $\left(c_{1} \cos m x+c_{2} \sin m x\right) e^{-c^{2} m^{2} t}$
ii) $\quad\left(c_{1} \cos m x+c_{2} \sin m x\right) e^{-m^{2} t}$
iii) $\quad\left(c_{1} \cos m x+c_{2} \sin m x\right)\left(c_{3} \cos c m t+c_{4} \sin c m t\right)$
iv) $\left(c_{1} \cos m x+c_{2} \sin m x\right)\left(c_{3} e^{m y}+c_{4} e^{-m y}\right)$
d) In Binomial probability distribution, if $p=q$, then $\mathrm{P}(\overline{\mathrm{X}}=r)$ is
i) ${ }^{n} c_{r}\left(\frac{1}{2}\right)^{n-r}$
ii) ${ }^{n} c_{1}\left(\sqrt\left[\left(\frac{1}{2}\right]{2}\right)^{n}\right.$
iii) ${ }^{n} c_{r}\left(\frac{1}{2}\right)^{n}$
iv) $20^{n} c_{n}\left(\frac{1}{2}\right)^{n}$
e) If $\bar{r}=x \hat{i}+y \hat{j}+z \hat{k}$ then $\nabla \cdot \bar{r}=$
i) 1
ii) 2
iii) 3
iv) 4
f) In a poisson distribution if $\mathrm{P}(r=3)=6 \mathrm{P}(r=4)$, then $\mathrm{P}(r=2)$ is equal to
i) 0.025
iii) 0.251
ii) 0.01148
iv) 0.1148

Q2) a) Fit a straight line of the Form $y=a x+b$ to the following data.

x	1	3	4	5	6	8
y	-3	1	3	5	7	11

b) Calcalate the first four moments about the mean of the following distribution.

x	1	2	3	4	5	6	7	08	9	10
F	6	15	23	42	62	60	40	24	13	5

c) Find the coefficient of correlation for the following table.

x	10	14	18	22	26	30
y	18	12	24	6	30	36

OR
Q3) a) Fit a straight line to the following data.

x	0	5	10	15	20	25
y	12	15	17	22	24	30

b) First four moments of distribution about value 4 are $-1.5,17,-30$ and 108. Find the first four moments about mean $\beta_{1} \& \beta_{2}$.
c) Obtain the regression lines for the following table.

x	6	2	10	4	8
y	9	11	$\times 5$	8	7

Q4) a) From 20 tickets marked 1 to 20, one ticket is drawn at random. Find the probability that it is marked with multiple of 3 or 5.8
b) A fair coin is tossed 6 times. Find a probability of getting:
i) at least four heads
ii) not heads
c) Assuming that the distance of 1000 brass plugs taken consecutively from machine from a normal distribution with mean 0.7515 cm and standard deviation 0.0020 cm . How many of the plugs are likely to be approved if the acceptable diameter is $0.752 \pm 0.004 \mathrm{~cm}$. (Given Area $=0.478$ for $z=2.25$ and Area 0.4599 for $z=1.75$)

Q5) a) A can hit the target 1 out of 4 times. Becan hit 2 out of 3 times. C can hit the target 3 out of 4 times. Find the probability that at least 2 hit the target.
b) In a certain factory turning outrazor blades there is a small chance of $\frac{1}{500}$ for any blade to be defective. The blades are supplied in a pack of
10. Use Poiss@n distribution to calculate the approximate number of packets containing no defective and two defective blades, in a consignment of 10,000 packets.
c) Among 64 off spring of a certain cross between European horses, 34 were red, 10 were black and 20 were white. According to a genetic moder, these numbers should be in the ratio $9: 3: 4$. Is the data consistant witn the model at 5% level of significance $\left(\chi_{v-1,0.05}^{2}=5,99\right)$.

Q6) a) Find the directional derivative of $\phi=x^{2}-y^{2}-2 z^{25}$ at the point $\mathrm{P}(2,-1,3)$, in the direction PQ where Q is $(5,6,4)$.
b) ${ }^{\wedge}$ Show that the vector field $\overline{\mathrm{F}}=\left(8 x y+z^{4}\right) \hat{i}+\left(4 x^{2}-z\right) \bar{j}+\left(4 x z^{3}-y\right) \bar{k}$ is irrotational. Find Scalar potential function ϕ such that $\overline{\mathrm{F}}=\nabla \phi$.
c) Using Green's theorem for $\overline{\mathrm{F}}=x y \bar{i}^{i}+y^{2} \bar{j}$ over region R enclosed by parabola $y=x^{2}$ and line $y \neq x$ in the first quadrant, evaluate $\int_{c} x y d x+y^{2} d y$.

Q7) a) Using Stoke's theoremievaluate $\iint_{s} \nabla \times \overline{\mathrm{F}} \cdot \hat{\mathrm{N}} d s$ where $\overline{\mathrm{F}}=3 y \bar{i}-x z^{2} \hat{j}+y z^{2} \bar{k}$ and s is surface of the paraboloid $2 z=x^{2}+y^{2}$ bounded by $z z=2 . \quad$ [5]
b) Prove that (any one):
i) $\bar{b} \times(\nabla(\bar{a} \cdot \nabla \log r))=\frac{\bar{b} \times \bar{a}}{r^{2}}-\frac{2(\bar{a} \cdot \bar{r})}{r^{4}}(\bar{b} \times \bar{r})$
ii) $\quad \nabla^{4}\left(r^{2} \log r\right)=\frac{6}{r^{2}}$
c) Find angle between the tangents to the cuvie $\bar{r}=t^{2} \bar{i}+2 \bar{t}-t^{3} \bar{k}$ at the points $t=1$ and $t=-1$.

Q8) a) A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$
\begin{aligned}
u(x, 0) & =x, & & 0 \leq x \leq 50 \\
& =100-x, & & 50 \leq x \leq 100 .
\end{aligned}
$$

Find the temperature $u(x, y)$ at any time.
b) Solve following $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$ subject to
i)
) $y(0, t)=0, \forall t$
ii) $\quad v(l, t)=0, \forall t$
iii) $\left(\frac{\partial y}{\partial t}\right)_{t=0}=0$

$$
\begin{aligned}
y(x, 0) & =\frac{3 a}{2 l} x, \\
& =\frac{3 a}{l}(l-x),
\end{aligned}
$$

Q9) a) Solve the equation $\frac{\partial^{2} u}{\partial \hat{x}^{2}}+\frac{\partial^{2} u}{\partial y_{0}^{2}}=0$ subject to
i) $u=0$ when $y \rightarrow \infty$ for all x
ii) $u=0$ when $x=0$ for all y
iii) $u=0$ when $x=$ for all y
iv) $u=x(1-x)$ when $y=0$ for $0<x<1$.
b) The initial temperature along the length of an infinite ban is given by $u(x, 0)=2, \quad|x|<1$ $=0, \quad|x|>1$. If the temperature $u(x, t)$ satisfies the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}},-\infty<x<\infty, t>0$, find the temperature at any point of the bar at time t.

$\rightarrow \quad \rightarrow$

