Total No. of Questions : 9]

PA-1285

SEAT No. :

[Total No. of Pages : 4

[5925] 311

S.E. (Automobile & Mechanical/Automation & Robotics/ Mechatronics /Mechanical /Mechanical Sandwich)

> ENGINEERING MATHEMATICS - III (2019 Pattern) (Semester - IV) (207002)

Time : 2¹/₂ Hours] [Max. Marks : 70 Instructions to the candidates: Question No. 1 is compulsory. Solve Q.2 or Q.3, Q.4 or Q.5, Q.6 or Q.7, Q.8 or Q.9. **1**) 2) Neat diagrams must be drawn whenever necessary. 3) Figures to the right indicate full marks. Use of electronic pocket calculator is allowed. **4**) 5) Assume suitable data, if necessary. The first four moments of a distribution about mean of the variable are 0, *O1*) a) 2, 0 and 11. Then $\beta_2 =$ [2] 2,3999 2.5i) iii) 2.75 iv) ? 0.5987 If $\overline{\mathbf{F}} = (x^2 y)\hat{i} + (xyz)\hat{j} +$ then curl \overline{F} at (1, 1, 2) is b) [2] ii) $3\hat{i} + \hat{j} + \hat{k}$ $5\hat{i} + \hat{j}$ i) $3\hat{i} + \hat{k}$ iv) iii) The most general solution of the partial differential equation c) representing heat flow along a bar is $(c_1\cos mx + c_2\sin mx)e^{-c^2m^2t}$ i) $(c_1 \cos mx + c_2 \sin mx)e^{-m^2t}$ ii) $(c_1 \cos mx + c_2 \sin mx)(c_3 \cos cmt + c_4 \sin cmt)$ iii) $(c_1 \cos mx + c_2 \sin mx)(c_3 e^{my} + c_4 e^{-my})$ iv) In Binomial probability distribution, if p = q, then $P(\bar{X} = r)$ is [2] d) i) ii) iii)

P.T.O.

e)	If $\overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then $\nabla \cdot \overline{r} =$	[1]
	i) 1 iii) 3 ii) 2 iv) 4	
0		1
f)	In a poisson distribution if $P(r=3) = 6P(r=4)$, then $P(r=2)$ is	
	to i) 0.025 ii) 0.01148	[1]
	iii) 0.251 iv) 0.1148	
	to i) 0.025 ii) 0.251 iii) 0.01148 iv) 0.1148	
Q2) a)	Fit a straight line of the Form $y = ax + b$ to the following data.	[5]
	x 1 3 4 5 6 8	
	y -3 1 3 5 7 11	
b)	Calculate the first four moments about the mean of the follo distribution.	
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	[5]
	F 6 15 23 42 62 60 40 24 13 5	
c)	Find the coefficient of correlation for the following table.	[5]
	x 10 14 18 22 26 30	
	y 18 12 24 6 30 36	
Q3) a)	Fit a straight line to the following data.	[5]
Q3) a)	x0510152025	
	y 12 15 17 22 24 30	0-
b)	First four moments of a distribution about value 4 are -1.5 , 17 , -3	
	108. Find the first four moments about mean $\beta_1 \& \beta_2$.	[5]
c)	Obtain the regression lines for the following table. $x \mid 6 \mid 2 \mid 10 \mid 4 \mid 8$	Sto]
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Q4) a)	From 20 tickets marked 1 to 20, one ticket is drawn at random. Fir	
b)	probability that it is marked with multiple of 3 or 5. A fair coin is tossed 6 times. Find a probability of getting:	[5] [5]
	i) at least four heads	
	ii) not heads	
c)	Assuming that the distance of 1000 brass plugs taken consecutively machine from a normal distribution with mean 0.7515 cm and star	
	deviation 0.0020 cm. How many of the plugs are likely to be approv	
	the acceptable diameter is 0.752 ± 0.004 cm. (Given Area = 0.47	'8 for
	z = 2.25 and Area 0.4599 for $z = 1.75$).	[5]
[5925]-3	311 2	

- A can hit the target 1 out of 4 times. C can hit 2 out of 3 times. C can hit **Q5**) a) the target 3 out of 4 times. Find the probability that at least 2 hit the target. [5]
 - In a certain factory turning outrazor blades there is a small chance of b)

 $\frac{1}{500}$ for any blade to be defective. The blades are supplied in a pack of 10. Use Poisson distribution to calculate the approximate number of packets containing no defective and two defective blades, in a consignment of 10,000 packets. [5]

Among 64 off spring of a certain cross between European horses, 34 c) were red, 10 were black and 20 were white. According to a genetic model, these numbers should be in the ratio 9:3:4. Is the data consistant with the model at 5% level of significance $(\chi^2_{\nu-1,0.05} = 5.99)$. [5]

Find the directional derivative of $\phi = x^2 - y^2 - 2z^{22}$ at the point P(2,-1,3), **Q6**) a) in the direction PQ where Q is (5, 6, 4). [5]

- Show that the vector field $\overline{F} = (8xy + z^4)\overline{i} + (4x^2 z)\overline{j} + (4xz^3 y)\overline{k}$ b) is irrotational. Find Scalar potential function ϕ such that $\overline{F} = \nabla \phi$. [5]
- Using Green's theorem for $F = xy\overline{i} + y^2\overline{j}$ over region R enclosed by c) parabola $y = x^2$ and the y = x in the first quadrant, evaluate $\int_{a} xy \, dx + y^2 dy$
 - OR

Using Stoke's theorem evaluate $\iint \nabla \times \overline{F} \cdot \hat{N} \, ds$ where $\overline{F} = 3y\overline{i} - xz^2\overline{j}$ **Q7**) a) and s is surface of the paraboloid $2z = x^2 + y^2$ bounded by z = 2. [5] Prove that (any one): [5]

b)

i)

$$\overline{b} \times \left(\nabla (\overline{a} \cdot \nabla \log r) \right) = \frac{\overline{b} \times \overline{a}}{r^2} - \frac{2(\overline{a} \cdot \overline{r})}{r^4}$$

ii)
$$\nabla^4(r^2\log r) = \frac{6}{r^2}$$

Find angle between the tangents to the curve $\overline{r} = t^2 \overline{i} + 2t \overline{j} - t^3 \overline{k}$ at the c) points t = 1 and t = -1. [5]

[5925]-311

A homogeneous rod of conducting material of length 100 cm has its **Q8**) a) ends kept at zero temperature and the temperature initially is [8]

[5925]-311