S.E. (Mechanical / Automation \& Robotics) KINEMIATICS OF MACHINERY (202047) (20190Pattern) (Semester - IV)

Time: 2½ Hours]
[Max. Marks : 70

Instructions to the candidates:

1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicates full marks.
4) Use of calculator is allowed.
5) Assume siuitable data, if necessary.

Q1) a) Explain with neat sketch different type of 1 CR .
b) \ltimes For the mechanism as shown in fie. find the acceleration of point D on link DBC when link $\mathrm{O}_{2} \mathrm{~B}$ rotates at $30 \mathrm{c} / \mathrm{s}$. Using relative velocity and acceleration method.
$\mathrm{O}_{2} \mathrm{~B}=200 \mathrm{~mm}, \mathrm{BD}=430 \mathrm{~mm}, \mathrm{DC}=170 \mathrm{~mm}, \mathrm{BC}=570 \mathrm{~mm}$.

Q2) a) Explain Velocity Image Principle with neat sketch.
b) For the configuration shown in the following fig. enumerate and locate all the instantaneous centers of velocities and hence, find the velocity of slider D, if the link $O A$ rotates at 100 rpm. Link lengths are $\mathrm{OQ}=225 \mathrm{~mm}, \mathrm{QB}=200 \mathrm{~mm}, \mathrm{AB}=250 \mathrm{~mm}, \mathrm{OA}=150 \mathrm{~mm}$, $\mathrm{AC}=450 \mathrm{~mm}, \mathrm{CD}=325 \mathrm{~mm}$. Total no. of links are 6 .

P.T.O.

Q3) a) Explain 3 position relative pole methed for synthesis of four bar chain mechanism.
b) A four-bar mechanism is to be masized by using precision points to generate the function $\mathrm{y}=2 \mathrm{x}^{2}-x$ for the range $1 \leq x \leq 4$. Assuming 30° starting position and 120° finishing position for input link and; 70° starting and 160° finishing position for output link. Find out values of x, y, θ (inpurangles fand φ (output angles) corresponding to the 3 precision points with Chebyshev spacing.

OR

Q4) a) Explain the following terms :
i) Dimensional Synthesis
ii) Eunction generation
iii) Body guidance
b) Deternine the chebyshev spacing for function $i=x^{1.3}$ for the range $0 \leq X \leq 3$ where three precision points are required. For these precision points, determine $\theta_{1}, \theta_{2}, \theta_{3} \& \phi_{1}, \phi_{2}, \phi_{3}$ if $\Delta \theta=40^{\circ} \& \Delta \phi=90^{\circ}$. [11]

Q5) a) What is a law of gearing? Explain the inaportance of law of gearing.
b) Two involute gears of 20° pressure angle are in mesh. The number of teeth on pinion is 20 and the gear ratio is 2 . If the pitch expressed in module is 5 mm and the pitch lime speed is $1.2 \mathrm{~m} / \mathrm{s}$, assuming addendum as standard and equar to onemodule. find :
i) The angle turned through by pinion when one pair of teeth is in mesh; and
ii) The maximum velocity of sliding.

OR
Q6) a) State and explaintérminology for spur gear with neat sketch.
b) The following data relate to a pair of 20° involute gears inomesh: [12] Module $=6 \mathrm{~mm}$, Number of teeth on pinion $=17$, Number of teeth on gear $=49$; Addenda on pinion and gear whee $1=1$ neodule.
Find :
i) The number of pairs of teeth in contaet;
ii) The angle turned through by the pinion and the gear wheel when one pair of teeth is in contact, and
iii) The ratio of sliding to rolling motion when the tip of a tooth on the larger wheel (i) is just making eontact, (ii) is just leaving contact with its mating tooth, and (iii) is at the pitch point.

Q7) a) Define the concept of automated production lines with suitable example.
b) A cam is to give the following motion to a knife-edged follower :
i) Outstroke during 60° of cam rotation;
ii) Dwell for the next 30 of cam rotation:
iii) Return stroke during next 60° of cam rotation, and
iv) Dwell for the remaining 210° of cam rotation.

The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm . The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when the axis of the follower passes through the axis of the camoshaft.

Q8) a) Short note : Automation and Al's Role in Manufácturing Industry.
b) The following data related to a cam profile, in. which the follower moves wwith S.H.M. during the lift and returning it with uniform acceleration and retardation, retardation being half the acceleration.
i) Minimum radius of cam, $\mathrm{r}_{\mathrm{b}}=30 \mathrm{~mm}$.
ii) Lift of follower, $S=45 \mathrm{~mm}$.
iii) Radius of roller, $r=10 \mathrm{~mm}$.
iv) Offset of follower axis,e $=12 \mathrm{~mm}$
v) Angle of ascent, $\theta_{0}=70^{\circ}$ (Nature is S.H.M.).
vi) Outer dwell angle, $\theta_{d}=45^{\circ}$.
vii) Angle of return, $\theta_{r}=120^{\circ}$ (uniform acceleration and retardation) Draw the cam profile.

みٌ\&

