

[5869]-219

S.E. (Mechanical \& Automobile Engg.) ELUIDMECHANICS
 (2019 Pattern) (Semester - IV)

Time: 2½ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Answer $Q .1$ or Q.,$~ Q .3$ or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of elecoronic pocket calculator allowed.
5) Assume syitable data if necessary.

Q1) a) Define stream function \& velocity potential function.
b) Derive an expression for continuity equationin 3 dimensions.
c) Find the velocity \& acceleration atapoint $(1,1,2)$ for the following flow field.
$\mathrm{V}=-x^{2} y \hat{i}-y^{2} 2 \hat{j}+\left(2 x y z+y z^{2}\right) \hat{k}$
OR
Q2) a) Explain path line \& stream line.
b) Discuss various types of flow with example.
c) The velocity potential function ϕ is given as $\phi=-2 x y$,
i) Determine stream function.
ii) Determine the velocity at $(2,2)$

Q3) a) State Bernoulli's theorem \& the assumptions made inBernounibl equation.
b) Derive expression for the pressure drop for a steady lan@nar flow through circular pipe.
[6]
c) A $200 \mathrm{~mm} \times 100 \mathrm{~mm}$ venturimeter is provided in vertical pipe carrying water flowing in horizontal direction. Adifferential mercury manometer connected to the inlet \& throut gives a reading of 220 mm . Find the velocity of fluid $\&$ rate of flow.

Q4) a) Draw neat labelled sketch of shear stress \& velocity distribution diagram across a section of pipe.
b) Derive Eulers equation for flow along stream line \& deduce the Bernoulli's equation from same.
c) A 0.2 m diameter pipe carries íquid in laminar region. A pitot tube placed in the flow at radial distance 15 mm from the axis of pipe indicates velocity of $0.5 \mathrm{~m} / \mathrm{s}$. Calculate i) Maximum velocity ii) Mean velocityi ii) Discharge through pipe.

Q5) a) Define the lift force \& drag force on an object immersed in a fluid. [4]
b) Explain the baundary layer separation \& discuss the methods to avoid boundary layer separation.
[6]
c) SyphonOfdiameter 200 mm connects two reservior hâving difference in elevation of 15 m . Total length of syphon is $600 \mathrm{~m} \&$ summit is 4 m above water level in upper reservior. If separation takes place at 2.8 m water abSolute. Find the maximum length of syphon from upper reservior to summit. Take coefficient of friction as $0.004^{\circ} \&$ atmospheric pressure as 10.3 m of water.

OR

Q6) a) Define \& explain boundary layer thickness.
b) Derive Darcy - weishbachequation for calculating loss of head due to friction in pipe.
c) A kite has plan area or $0.25 \mathrm{~m}^{2}$ \& is flying in wind of velocity 25 kmph . \% The kite has net weight of 1.2 N . When string is inclined at angle of 15° to the vertical , tension in string was found to be 3N. Evaluate coefficientéf lift \& drag. Take density of air as $1.5 \mathrm{~kg} / \mathrm{m}^{3}$.

Q7) a) Explain Froude's_Módel Law.
b) Define with examples:
i) Reynolds Number
ii) Froude's Number
c) Using Buckingham's π theorem prove that the discharge over weir is given by

$$
\mathrm{Q}=\mathrm{VL}^{2}[\mathrm{gL} / \mathrm{V}, \mathrm{H} / \mathrm{L}]
$$

Q8) a) Explain Reynold's Model Law
b) Define with examples.
i) Euler's Number
ii) Mach Number
c) The pressure rise ${ }^{\prime} \Delta P^{\prime}$ generated by a pump is a function of the impeller diameter ' D ', the rotational speed ' N ', the fluid density ' ρ ', viscosity ' μ ' and the rate of discharge Q , show that
$\Delta P=S N^{2} D^{2} \phi\left[\frac{Q}{N D^{3}}, \frac{S N D^{2}}{\mu}\right]$ using Buckingham's Theorem.

