S.E. (Automobile\&Mechanical / Mechanical Sandwich /Automation \& Robotics) (Insem) SOLGD MECHANICS (2019 Pattern) (Semester-III) (202041)

Time : 1 Hour]

Instructions to the candiates:

1) Answer Q.1 GoQ.2, Q. 3 or Q.4.
2) Figures to the right indicate full marks.
3) Use of electronic pocket calculator is allowed.
4) Assuñe suitable data if necessary.

Q1) a) A member ABCD is subjected to a point loads $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ and P_{4} as shown in Fig. Calculate the torce $P / /^{\prime}$ necessary for equilibrium, if $P_{1}=45 \mathrm{kN}, \mathrm{P}_{3}=450 \mathrm{kN}$ and $\mathrm{P}_{4}=130 \mathrm{RN}$. Determine stress in each member, assuming the modulus of elesticity to be $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

b) A steel rod 2 m long is at $30^{\circ} \mathrm{C}$. The temperature of this rod is increased to $150^{\circ} \mathrm{C}$ find.
i) Free expansion of the rod
ii) Temperature stress produced ifexpansion is prevented and nature of stress.
iii) Stress produced if 2 mm expansion is permitted and nature of stress if $\alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\mathrm{E} \cong 200 \mathrm{GPa}$, Bar diameter $=16 \mathrm{~mm}$.

OR

Q2) a) Two vertical rods one of steel and one of bronze suspended at a distance of 600 mm apart. Each rod is 3 m long, 12 mm in diameter as shown in Fig. A horizontal cross bar connect the lower ends of the rod on it placed a load of 4500 N so that cross bar remains horizontal. Find the position of the (load on the cross bar and stresses in each rod. $\mathrm{E}_{\text {steel }}=1.96 \times 10^{5} \mathrm{MPa}$, $\mathrm{E}_{\text {bronz }}=0.63 \times 10^{5} \mathrm{MPa}$.
b) In a tensile test on steel tube external diameter 18 mm and internal diameter 12 mm , an axial pull of 2 kN produces stretch of $6.72 \times 10^{-3} \mathrm{~mm}$ in a length of 100 mm and tateral contraction of $3.62 \times 10^{-4} \mathrm{~mm}$ in an outer diameter. Calculate the kalues of three Modulii and Poisson's ratio of material.

Q3) a) A simply supported beam AE is loaded as shown (11) Fig. Braw shear force and bending moment diagram indicating maxirhum bending moment and determine its value.
b) For an overhanging beam as shownimFig. Draw shear force and bending moment diagram. Determine the point of contraflexure within the span AB.

Q4) a) Draw shear force and bending moment diagram of a cantilever beam AB of 4 m 'n long having fixed end at ' A ' and loaded with uniformly distributed 1oad of $2 \mathrm{kN} / \mathrm{m}$ up to 2 m from end B and with a concentrated load of $\times 3 \mathrm{kN}$ at 1 m from end A .
b) An overhanging beam loaded andsupported as shown in Fig. Draw shear force and bending moment diagram Also find the point of contraflexure if any.

