\square

S.E. (Automobile \& Mechanical/ Mechanical Sandwich and Aviomation \& Robotics) SOLID MECHANICS
 (2019 Pattern) (Semester-III) (202041)

Time : $2^{1 ⁄ 2}$ Hours
Instructions to the candidates:

1) Answer Q1, or Q2, Q3 or Q4, Q5 or Q6, Q7or Q8.
2) Figures to the right indicate full marks.
3) Use of electronic pocket calculator is allowed.
4) Assume suitable data, if necessary.

Q1) a) WThe shear force of 50 kN acts on I section beam as shown in fig. 1 have unequal flanges. Moment of inertia aboutneutral axis is $2.849 \times 10^{8} \mathrm{~mm}^{4}$. Calculate magnitude of shear stress atimportant points and draw shear stress distribution diagram.

Q1 (a) Fig. 1
b) A beam of length 6 m is simply supported at itsend and carries two point loads of 48 kN and 40 kN at a distance of 1 m and 3 m respectively from left Support. Find
i) Deflection under each load,
ii) Maximum deflection and
iii) Point at which maximum ©eflection occurs. Take I $=85 \times 10^{6} \mathrm{~mm}^{4}$ and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}$?

OR

Q2) a) A simply supported beam is 10 m long carries udl of $40 \mathrm{kN} / \mathrm{m}$ over entire span. The eross section of beam is I as shown in fig.2. Calculate the maximum stress-produced due to bending. Also draw bending stress distributton diagram across depth :

Q.2(a) Fig. 2
b) The T shaped cross section of beam has 200 mm , wide $\hat{Y} 50 \mathrm{~mm}$ thick flange and overall depth of section is 250 mm The web is 50 mm thick. Section is subjected to vertical shear force of 100 kN .Calculate the shear stress at the neutral axis and at the junction of flange and the web. Take I about NA $=1.134 \times 10^{8} \mathrm{~mm}^{4}$. Also draw the shear stress distribution diagram.

Q3) a) A shaft of hollow circular section has opter diameter 120mm, inner diameter 100 mm . Permissible shear stress is 95 MPa . Angle of twist is not to exceed 3.6 degree in a length of 3 m . Maximum torque is 30% excess of mean torque. Speed of shaft is 2 Hz . Determine maximum power transmitted by shaft. Take G $=80$ GPa 5
b) A cylindrical tube havinginternal diameter 70 mm and external diameter 80 mm is subjected to anaxial tensile load of 90 kN undergoes an extension of 3 mm overits 8 mlength. What is the safe axial load resisting capacity of Column when cylindrical tube is fixed at one end and free at other end. Determine safe @ad on column taking FOS as 3.

Q4) a) The solid circular composite shaft ABC consists of steel and bronze segments as shown in fig.3. Shaft is rigidly fixed at A and free at C, subjectedy to a torque as shown. Determine angle of twist at free end with respect to fixed end. Take $C=83 G P a$ for steel and $C=35 \mathrm{GPa}$ for bronze.

Q.4(a) Fig. 3
b) A bar of length 4 m whenuised as SSB and subjected to UDL of 50 kNom over the whole span, deflects 20 mm at Centre. Determine the crippling load when it is used as a column with following conditions.
i) Both end pimned joints
ii) One end fixed and other end free
iii) Both end fixed

Q5) a) A strained material is subjected to stressesox $=110 \mathrm{~N} / \mathrm{mm}^{2}$ Tensile, $\sigma y=47 \mathrm{~N} / \mathrm{mm}^{2}$ (Tensile) and $\tau x y=63 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the intensity of normal tangential and resultant stress and angle of obliquity on a plane inclined at 30° to the plane carrying $110 \mathrm{~N} / \mathrm{mm}^{2}$ stress as shown in Fig.4. Also find Principal stresses and its orientation.Use analytical method.[12]

Q.5(a) Fig. 4

b) According to maximum shear stress theory determine the diameter of a bolt which is subjected to an axial pull force of 9 kN together with a transverse shear force of 4.5 kN . Elastic limit in tension is $225 \mathrm{~N} / \mathrm{mm}^{2}$, factor of safety is 3 .

OR
Q6) a) The planes are stressed as shownin ig.5, determine the principal stresses and its orientation. Determine notmal and tangential stresses on oblique plane inclined at 30° with the plane of 60 MPa . Also determine the maximum shear stress and plane on which it acts using Mohr's Circle method. [12]

b) A machine element is subjected to the-stress $\sigma x=60 \mathrm{MPa}, \sigma y=45 \mathrm{MPa}$, $\tau_{\mathrm{xy}}=30 \mathrm{MPa}$. Find the factor of safety if it is made of C45 steel having yield stress as 353 MPa . Using thefollowing theories. Take $1 / \mathrm{m}=0.3 .[6]$
i) Maximum shear stress theory
ii) Distortion energy theory, Maximum principal strain theory.

Q7) a) A horizontal bracket ABC consist two perpendicular arm having circular cross section with diameter 60 mm . At point $\mathrm{C}, \mathrm{P}_{1}$ vertical load 2.02 kN and P_{2} horizontal 3.07 kN are acting as shown in fig. 6 . Neglecting weight of bracketcalculate the maximum and minimum stresses developed at support due to $P_{1} \& P_{2}$.

b) A solid shaft of diameter 80 mm is subjected to wisting-moment of 8 $\mathrm{MN}-\mathrm{mm}$ and bending moment of $5 \mathrm{MN}-\mathrm{mm}$ at a point. Determine
i) Principal stresses and
ii) Position of plane on which it acts.

OR

Q8) a) Determine the resultant stress at four corners of column subjected eccentric load of $\mathrm{P}=600 \mathrm{kN}$ as shown in Fig.8.

b) Draw core or kernel of section for a rectangular section having dimensions $600 \mathrm{~mm} \times 450 \mathrm{~mm}$. show the dimension of core/kernel of section in it.

