\square

S.E. (Automobile \& Mechanical/Mechanical Sandwich) ELECTRICAL AND ELECTRONICS ENGINEERING (2019 Pattern) (Semester - III) (203156)

Time: 2½ Hours]
[Max. Marks : 70
Instructions to the candidates.

1) Solve Q 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Figures to the right indicate full marks.
3) Neat diagramis must be drawn wherever necessary.
4) Assume suitable additional data, if necessary.
5) Use of non-programmable calculators is allowed.

Q1) a) What is the back emf in a DC motor? Explain the significance of back emf in the operation of the motor
b) ${ }^{\star}$ Derive the expression for the armature torque developed in a DC motor.
c) The armature resistance of a 200 VDe shunt motor is 0.4Ω and the no load armature current is 2 A . Whenloaded and taking an armature current of 50 A , the speed is 1200 rpm . Find the no load speed.

Q2) a) Draw the cross sectional view of a DC motor and name important part of it.
b) What is electrical braking in a DC motor? Explain regenerative braking for a DC shunt motor in detail.
c) A 250 V DC shunt motor has armature circuit resistance of 0.2Ω and field resistance of 125Ω. it runs at 1500 rpm and draws a eurrent of 50A on full load. Calculate the speed of motor at haif load condition.[8]

Q3) a) Enlist any three applications of a three phase inductiompotor. [3]
b) Draw and explain the torque-slip characteristics of ay phase induction motor in details.
c) A 24 pole. 50 Hz star connected induction motorhas rotor resistance of 0.016Ω per phase and rotor reactance of 0.265Ω per phase at standstill. It is achieving its full load torque at a speed of 247 rpm . Calculate the ratio of i) full load torque to maximum(torque ii) starting torque to maximum torque.
b) What is the need of a starter for athree phase induction motor? Explain the operation of a star-delta with the help of neat diagram.
c) A 4 pole, 50 Hz . three phase induction motor runs at 1440 rpm while delivering the power output of 40 kW . The stator losses at this load are equal to rotor @sses and mechanical losses amount to 3500 W . Calculate :
i) slip
ii) mechanical power developed by rotor
iii) potor cu loss
iv) rotor input
v) statorimput and
vi) efficiency

Q5) a) List the significant benefits of use of an electric vehicle.
b) Dran the block diagram of the structure of an electric vehicle and explain thie function of any three major parts.
c) Explain the configuration of a Batiery Electric Vehicle (BEV) with the help of a diagram.
b) Explain the Vehicle to Grid (V2G) technology with the help of a diagram.
c) Explain the configuation ofaPlug-in Hybrid Electric Vehicle (PHEV) with the help of a diagram. 0

Q7) a) Explain the C - rate of abattery.
b) Elaborate the factors used in the selection of an energy storage device in case of EVs.
c) Explain the working of a three phase induction motor drive for ${ }^{\circ} \mathrm{V}$ s with the help of block diagram.

Q8) a) Calculate the capacity of a battery in Wh if a 2 kW of constant power is discharged for the duration of 2.5 hours
.[3]
b) What are supercapacitors? Explain the role of supercapacitors in the development of electric vehicles.
c) Explain the construction and working of a BIDC motor drive using suitable diagram.

