Instructions to the camdidates:

1) Answer Q1 or Q2,Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Figures to the लight indicate full marks.
3) Use graph paper for Graphical Solution.
4) Use of electronic pocket calculator is allowed.
5) Assume suitable data if necessary.

Q1) a) A \$quare beam $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ in section and 2 m long is supported at the ends. The beams fails when a point loace of 400 N is applied at the centre of the beam. What uniformly distributed load per meter length will break a cantilever of the same material 40 mm wide, 60 mm deep and 3 m long?
b) A simply supported beam of span 4 m carries a central point load 100 kN . The beam is I-section of unequal flange as shown in Figure 1. Calculate shear stress at neutral axis âand also draw shear stress distribution over the depth of the section.

Figure 1

OR
P.T.O.

Q2) a) A T section of flange $180 \mathrm{~mm} \times 30$ rom and web $200 \mathrm{~mm} \times 30 \mathrm{~mm}$ is simply supported at the both ends., It carries two concentrated loads of 110 kN each acting 2 m distancefrom each support. Span of the beam is 10 m . Determine the maximum bending stress induced in the beam and draw bending stress distribution diagram and also find bending stress at the layer 110 mmfrom the bottom.
b) A simply supported beam of span 8 m is subjected to point loads' of 60 $\mathrm{kN}, 80 \mathrm{kN}$ and 50 kN at $2 \mathrm{~m}, 4 \mathrm{~m}$ and 6 m from left support respectively. Determine slope at left support and deflection under 60 kN and 80 kN loads. Take $\mathrm{EI}=2.668 \times 10^{9} \mathrm{kNm}^{2}$.

Q3) a) A hollowshaft with diameter ratio $3 / 5$ is required to transmit 450 kW at 120 rpi with a uniform twisting moment The sheaing stress in the shaft must.hot exceed $60 \mathrm{~N} / \mathrm{mm}^{2}$ and the twist in a length of 2.5 m must not exceed 1°. Calculate the external diameter of the shaft satisfying these conditions. Take the modulus of rigidity is $8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
b) A 4 m length of a tube has a buckling 10 ad of 2 kN when used as a column hinged at both ends. Calculate bucklingload for 4.5 m length of the same tube when used as column 1
i) Both ends are fixed
ii) One end fixed and other is hinged
iii) One end is fixed and the other free.

Q4) a) A composite shaft consist of copper rod of 20 mm diameter enclosed in a steel tube of 60 mm external diameter and 20 mm thick. The shaft is required to transmit to torque of 1200 Nm . Determine the shear stresses developed in the copper and steel if both the shaft have equal length and welded to a plate at each end so that their twists are equal take modulus of rigidity for steel as twice that copper.
b) Calculate the critical load for a strut whichris madeup of a bar circular in section, 1.2 m long and which is hinged at one end and fixed at the other end. The same bar when freely supported at its ends gives the central deflection of 3 mm , when a load of 100 Nis placed at its centre. Also find the safe load taking factor of safety is

Q5) a) At a point in a strained material, there are two mutually perpendicular stresses of 30 MPa and 70 MPa , both tensile. They are accompanied by a shear stress of 20 MPa . Determine principal plane and principal stresses. Use Mohr's stress circle methöd only.
b) A solid circular shaft is subjected to a bending moment of 45 kNm and a torque of 15 kNm . Design the diameter of the shaft according to:
i) Maximum principal stress theory
ii) Maximum shear stress theory
iii) Maximinn strain energy theory

Take $\mu=0,25$, Stress at elastic limit $=200 \mathrm{MPa}$ and factor of safety is 2 .

OR

Q6) a) Arectangular block of material is subjected tio tensile stress of $110 \mathrm{~N} /$ mm^{2} on one plane and a tensile suress of $60 \mathrm{~N} / \mathrm{mm}^{2}$ on a plane at right angles, together with shear stresses $\circ+70 \mathrm{~N} / \mathrm{mm}^{2}$ on the faces. Find the following terms:
i) The magnitude of primcipalstresses
ii) The magnitude of greatest shear stress
iii) The location of principle plane
iv) The location of plane containing maximum shear stress.
b) An axial pull of 25 kN along with a shear force of 20 kN is applied to a circularbar of 20 mm diameter. The elastic limit of thebar material is 250 MPa and Poisson's ratio, $\mu=0.3$. Determine the factor of safety against failure based on:
i) Maximum shear stress theory
ii) Maximum strain energy theory
iii) Maximum principal strain energy theory
iv) Maximum shear strain energy theory

Q7) a) A segment of a generator shaft is subjected to a torque T and an axial force P , as shown in the figure 2. The hollow shaft having outer diameter $\mathrm{d}_{2}=280 \mathrm{~mm}$ and inner diameter $\mathrm{d}_{1}=230 \mathrm{~mm}$ and delivers 1800 kW at 4.0 Hz . If the compressive force, $\mathrm{P}=525 \mathrm{kN}$. What are the maximum tensile, compressive and shear stresses in the shaft?

Figure 2
b) Ahollow rectangular section is having external size $600 \mathrm{~mm} \times 550 \mathrm{~mm}$ cand internal size $500 \mathrm{~mm} \times 450 \mathrm{~mm}$. It earries á vertical load of 110 kN at the outer edge of the column on $X \curvearrowright a x i s$. Calculate maximum and minimum intensities of stress in the section.Assame 600 mm side horizontal. [8]

Q8) a) The bar has a dianeter 40 mm . if it is subjected to the two force components at its end as shown in figure3. Determine the state at point C A and B and show the results on a different volume element located atehis point.

Figure 3
b) Determine the stress resultant at foup corners of Column subjected to eccentric load of 500 kN , as shown in Figure. 4

