S.E. (Automobile \& Mechanical Engineering/Mechanical Sandwitch/Automation \& Robotics) SOLIDMECHANICS (2010 Pattern) (Semester - I) (202041)

Time : 1 Hour]

[Max. Marks : 30
Instructions to the camdidates:

1) Answer Q. 1 or Q.2, Q. 3 or Q.4.
2) Figures to the right side indicate full marks.
3) Use of electronic pocket calculator is allowed.
4) Assume Suitable data if necessary.

Q1) a) A 2.0 hong steel bar is having uniform diameter 40 mm for a length of 1 m from one end. For the next 0.5 m length the diameter decreases uniformly to ' d '. For the remaining 0.5 m lengthit has a uniform diameter of $/ \mathrm{d} \mathrm{mm}$. When a load of 150 kN is applied, the observed extension is $\times 2.40 \mathrm{~mm}$. Determine the diameter 2 . Take modulus of elasticity for steel equal to $200 \mathrm{kN} / \mathrm{mm}^{2}$.
b) The composite bar consisting of stel and aluminium components as shown in Fig 1.1 is connecred to two grips at the ends at a temperature of $60^{\circ} \mathrm{C}$. Find the stresses in the two rods when the temperature falls to $20^{\circ} \mathrm{C}$.
i) if the ends do not yield.
ii) if the ends yield by 0.25 mm .

Take $\mathrm{E}_{s}=2 \times 10^{5}$ and $\mathrm{E}_{a}=0.7 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \alpha_{\mathrm{s}}=1.17 \times 10-5$ and $\alpha_{\mathrm{a}}=2.34 \times 10^{-5} \mathrm{per}{ }^{\mathrm{C}}$ C. The areas of steel and aluminium bars are 250 mm^{2} and $375 \mathrm{~mm}^{2}$ respectively.

Fig 1.1

OR
P.T.O.

Q2) a) A steel block $360 \mathrm{~mm} \times 80 \mathrm{~mm} \times 160$ fam is subjected to the following forces.
i) A tensile force of 1280 KN on the $160 \mathrm{~mm} \times 80 \mathrm{~mm}$ faces (take as a X-direction).
ii) A tensile force 3456 KN the $360 \mathrm{~mm} \times 80 \mathrm{~mm}$ faces (take as a Y direction) and.
iii) A compressive foree of 5184 KN on the $160 \mathrm{~mm} \times 360 \mathrm{~mm}$ faces (take as α-direction).
Find the changes in the dimensions of the block and also the change in volume. Thake $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $1 / \mathrm{m}=0.25$.
b) A rigid rod ABCD is supported by a hinge at A and two wires at B and C as shown in figure 2.1. Determine the stresses and elongation of the two wires. Take $\mathrm{E}_{\mathrm{s}}=200 \mathrm{GPa}$ and $\mathrm{E}_{\mathrm{c}}=100 \mathrm{GPa}$.

Fig 2.1

Q3) a) Draw SFD and BMD of the beam shown in figure 3.1

b) Draw SFD \& BMD of the beam shown in figure 3.2 , also locate the point of contraflexure from left end.

Fig 3.2
OR

Q4) a) Draw SFD \& BMD of the beam shown in figure 4.1.

b) Draw SED \& BMD, of the beam shown in figure 4.2, also find the POC from leftend.

Fig 4.2

