Total No. of Questions : 4]

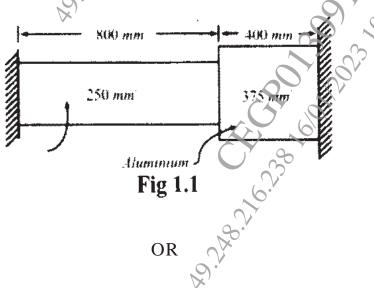
PA-47

N

[Total No. of Pages : 3

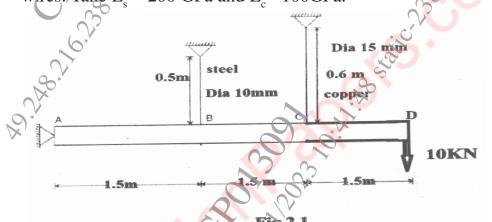
SEAT No. :

[5931] 73

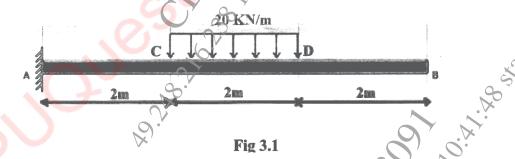

S.E. (Automobile & Mechanical Engineering/Mechanical Sandwitch/Automation & Robotics) SOLID MECHANICS

(2019 Pattern) (Semester - I) (202041)

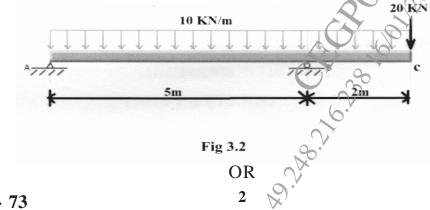
Time : 1 Hour] Instructions to the candidates: [Max. Marks : 30

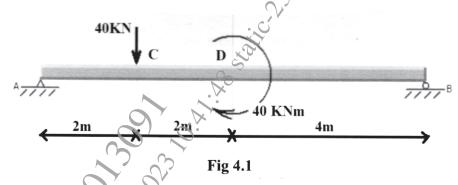

- 1) Answer Q.1 or Q.2, Q.3 or Q.4.
- 2) Figures in the right side indicate full marks.
- 3) Use of electronic pocket calculator is allowed.
- 4) Assume Suitable data if necessary.
- **Q1**) a) A 2.0 m long steel bar is having uniform diameter of 40 mm for a length of 1 m from one end. For the next 0.5 m length the diameter decreases uniformly to 'd'. For the remaining 0.5 m length thas a uniform diameter of d mm. When a load of 150 k N is applied, the observed extension is 2.40 mm. Determine the diameter d. Take modulus of elasticity for steel equal to 200 k N/mm². [7]
 - b) The composite bar consisting of steel and aluminium components as shown in Fig 1.1 is connected to two grips at the ends at a temperature of 60° C. Find the stresses in the two rods when the temperature falls to 20°C.
 - i) if the ends do not yield.
 - ii) if the ends yield by 0.25 mm.

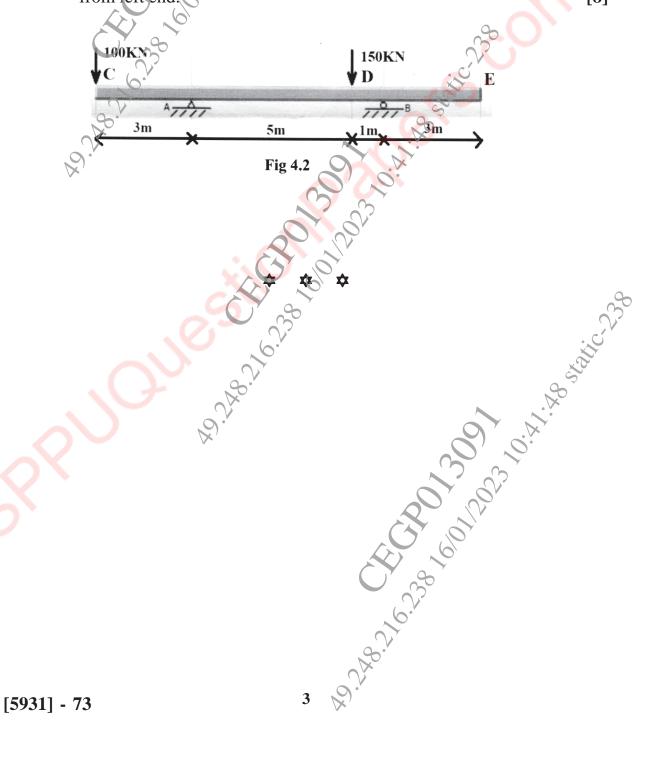
Take $E_s = 2 \times 10^5$ and $E_a = 0.7 \times 10^5$ N/mm², $\alpha_s = 1.17 \times 10^{-5}$ and $\alpha_a = 2.34 \times 10^{-5}$ per °C. The areas of steel and aluminium bars are 250 mm² and 375mm² respectively.



P.T.O.


- Q2) a) A steel block 360mm×80mm×160 mm is subjected to the following forces. [7]
 - i) A tensile force of 1280KN on the 160mm×80mm faces (take as a X direction).
 - ii) A tensile force 3456 KN the 360mm×80mm faces (take as a Y direction) and.
 - iii) A compressive force of 5184KN on the 160mm×360mm faces (take as a Z direction). Find the changes in the dimensions of the block and also the change in volume. Take $E = 2 \times 10^5$ N/mm² and 1/m = 0.25.
 - b) A rigid rod ABCD is supported by a hinge at A and two wires at B and C as shown in figure 2.1. Determine the stresses and elongation of the two wires. Take $E_s = 200$ GPa and $E_c = 100$ GPa. [8]


Q3) a) Draw SFD and BMD of the beam shown in figure 3.1


b) Draw SFD & BMD of the beam shown in figure 3.2, also locate the point of contraflexure from left end. [8]

[5931] - 73

b) Draw SFD & BMD, of the beam shown in figure 4.2, also find the POC from left end. [8]

[7]