S.E. (Automation\&Robotics / Mechanical/ Automobile \& Mechanical / Mechanical-S.W) SOLIDMECHANICS
 (2019Rattern) (Semester-III) (202041)

Time: $2^{1 ⁄ 2} / 2$ Hours]
[Max. Marks: 70
Instructions to the candidates?

1) Answer Q1 or Q2, Q, 3 or Q4, Q5 or Q6, Q7 or Q8.
2) Figures to the right indicate full marks.
3) Use Graph Paper for Graphical Solution.
4) Use of electronic pocket calculator is allowed.
5) Assume suitable data if necessary.

Q1) a) A holYow rectangular beam section square in size having outer dimensions $120 \times 120 \mathrm{~mm}$ with uniform thickness of mạterial 20 mm is carrying a ashear force of 125 kN . Calculate the maximum shear stress induced in the section also draw the shear stress distribution diagram.
b) A simply supported beam qfispan 8 mf is subjected to point loads of 60 $\mathrm{kN}, 80 \mathrm{kN}$ and 50 kN at $2 \mathrm{~m}, 4 \mathrm{~m}$ and 6 m from left support respectively. Determine slope at left support and deflection under 60 kN and 80 kN loads. Take EI $=2.668 * 10^{9} \mathrm{kNm}^{2}$.

Q2) a) A T section of flange $180 \mathrm{~mm} \times 30 \mathrm{~mm}$ and web $200 \mathrm{~mm} \times 30 \mathrm{~mm}$ is simply supported at the both ends. It carries two concentrated loads of 110 kN each acting 2 m distance from each support-Gpan of the beam is 10 m . Determine the maximum bending stress induced in the beam and draw bending stress distribution diagram and also find bending stress at the layer 110 mm from the bottom.
b) A cantilever 2 m long carries a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ over 1 m portion from fixed end and a point load of 20 kN at free end. Calculate the maximum slope and deflection of the cantilever. Take $\mathrm{EI}=2 \times 10^{3} \mathrm{kNm}^{2}$.

Q3) a) A steel shaft of 960 mm diameterdi's required to transmit 240 kW power at 240 r.p.m. and maximum dorque is 40% greater than the mean torque.Find the maximum allowable stress in the shaft material.
b) A hollow square section column is 4 m long (Outer dimension $150 \mathrm{~mm} \times$ 150 mm and Inmer dimeñion $100 \mathrm{~mm} \times 100 \mathrm{~mm}$). If it is fixed at its both ends, find the-Euler's critical load on the column and corresponding stress. Take $\mathrm{E}=180 \mathrm{Gpa}$

OR

Q4) a) Aholiow shaft transmits 100 kW at 120 r.p.m. Allowable shear stress in material is $50 \mathrm{~N} / \mathrm{mm}^{2}$. Shaft shall not twist 2° in 1 ml length. Ratio of internad diameter to external diameter is 0.25 Tảke $G=80 \mathrm{kN} / \mathrm{mm}^{2}$. Maximum torque 15% more than mean torqué Calculate maximum external diameter of a shaft.
b) \times A 4 m length of a tube has a bueking load of 2 kN when used as a column hinged at both ends. Catculate buckling load for 4.5 m length of the same tube when used as column if?
i) Both ends are fixed
ii) One end fixed and otheris hinged
iii) One end if fixed and the other free.

Q5) a) A rectangular block of material is subjected to a tensilestress of $110 \mathrm{~N} / \mathrm{mm}^{2}$ on one plane and a tensile stress of $60 \mathrm{~N} \mathrm{~mm}^{2}$ on a plane at right angles, together with shear stresses of $70 \mathrm{~N} / \mathrm{mm}^{2}$ on the faces. Find the following terms.
i) The magnitude of principal stresses
ii) The magnitude of greatest shear stress
iii) The location of principle plane
iv) The location of plane containing maximum shear stress.
b) A solid circular shaft is subjected tola bending moment of 45 kNm and a torque of 15 kNm . Design the diameter of the shaft according to:
i) Maximum principal stress theory
ii) Maximum shear stress, theory
iii) Maximum strain energy theory

Take $\mu=0.25$, Stress-at elastic limit $=200 \mathrm{MPa}$ and factor of safety is 2 .

OR

Q6) a) At a poine in astrained material, there are two mutually perpendicular stresses of 30 MPa and 70 MPa , both tensile. They are accompanied by a shear stress of 20 MPa . Determine principal plane andprincipal stresses. Use Mohr's stress circle method only.
b) Appaxial pull of 25 kN along with a shear force of 20 kN is applied to a cipcular bar of 20 mm diameter. The elastic limit of the bar material is 250 MPa and Poisson's ratio, $\mu=0.3$. Determine the factor of safety against failure based on:
i) Maximum shear stress theory
ii) Maximum strain energy theory
iii) Maximum principal strain-energy theory
iv) Maximum shear strain engergy theory

Q7) a) Determine the stress resultant at four corners of column subjected to eccentric load of 500 kN , as shown in Fig.1.

Fig. 1
b) A segment of a generator shaft is subjected to a torque T and an axial force P, as shown in the Fig.2. The hollow shaft having outer diameter $\mathrm{d}_{2}=280 \mathrm{~mm}$ and inner diameter $\mathrm{d} \in 230 \mathrm{~mm}$ and delivers 1800 kW at 4.0 Hz . If the compressive force, $\mathrm{P}=525 \mathrm{kN}$. What are the maximum tensile, compressive and shear stresses in the shaft?

Fig. 2

Q8) a) A hollow rectangular section is having external size $600 \mathrm{~mm} \times 550 \mathrm{~mm}$ and internal size $500 \mathrm{~mm} \times 450 \mathrm{~mm}$. Tt carries a vertical load of 110 kN at the outer edge of the colunn on X-axis. Calculate maximum and minimum intensities of stress in the section. Assume 600 mm side horizontal. [8]
b) Determine the Principarstress in the beam at point A as shown in Fig.3. 0
[9]

Fig. 3

