S.E. (Mechanical/Automobile \& Mechanical/Mechanical-S.W)

ENGINEERING THERVIODYNAMICS (2019 Pattern)

(Semester-II) (202043)
Time: $2^{11 / 2}$ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Solve four questions; Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q. 6 and Q. 7 or Q.8.
2) Neat aiagłams must be drawn wherever necessary.
3) Use of steam fables, Mollier charts and scientific table is allowed.
4) Assume suitable data wherever necessary.
5) Figures to the right indicate full marks.

Q1) a) Explain the terms Available energy, Unavailableo energy and Availability.[6]
b) What do you mean by 'Clausius inequality'?
c) Steam expands adiabatically in a turbine from $20 \mathrm{bar}, 400^{\circ} \mathrm{C}$ to 4 bar , $250^{\circ} \mathrm{C}$. calculate:
i) The isentropic efficiency ofthe process;
ii) The loss of avanability of the system assuming an atmospheric temperature of $20^{\circ} \mathrm{C}$. The changes in K.E. and P.E. may be neglected.

Q2) a) Prove that entropy is a property of a system
b) $300 \mathrm{~kJ} / \mathrm{s}$ of heat is supplied at a constant fixed temperature of $290^{\circ} \mathrm{C}$ to a heat engine. The heat rejection takes place at $8.5^{\circ} \mathrm{C}$. The following results were obtained:
i) $215 \mathrm{~kJ} / \mathrm{s}$ are rejected.
ii) $\quad 150 \mathrm{~kJ} / \mathrm{s}$ are rejected.
iii) $75 \mathrm{~kJ} / \mathrm{s}$ are rejected.

Classify which of the result report a reyersible cycle or irreversible cycle or impossible results.
c) 3 kg of gas $\left(\mathrm{c}_{\mathrm{v}}=0.81 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}\right)$ initially at 2.5 bar and 400 K receives 600 kJ of heat from an infinite source at 1200 K . If the surrounding temperature is 290 K , find the loss in available energy due to above heat transfer. [5]

Q3) a) A vessel having a capacity of $0.05 \sim \sim_{3}$ contains a mixture of saturated water and saturated steam at a temperature of $245^{\circ} \mathrm{C}$. The mass of the liquid present is 10 kg .
Find the following:
i) The pressure
ii) The mass
iii) The speeific volume
iv) The speeific enthalpy
v) The specific entropy and
vi) The specific internal energy
b) Draw $p-v, I-s$ and $h-s$ diagram for Rankine cycle.
c) Explainthe Limitations of Carnot Cycle.

OR

Q4) a) $\mathrm{p}-\mathrm{VT}$ (Pressure-Volume-Temperature) surface for pure substance.
b) Avessel having a volume of 0.6 m contains 3.0 kg of liquid water and \times water vapour mixture in equilibrium at a pressure of 0.5 MPa . Calculate. [6]
i) Mass and volume of liquid?
ii) Mass and volume of vappur.
c) Compare Rankine Cycle and Carnot Cycle.

Q5) a) Explain the Bomb calorimeter with a neat sketch.
b) The percentage composition of sample of liquid fuel by weight is, $\mathrm{C}=84.8$ per cent, and $\mathrm{H}_{2}=15.2$ per cent. Calculate
i) The weight of gip needed for the combustion of 1 kg of fuelo
ii) The volumetric composition of the products of combustion if 15 per cent excess air is supplied.
c) Following results were obtained when a sample of gas was tested by Junker's gas calorimeter: Gas burnt in the calofimeter $=0.80 \mathrm{~m}_{3}$, Pressure of gas supply $=5.2 \mathrm{~cm}$ of water, Barometer $=755 \mathrm{~cm} \cdot \mathrm{f}^{\prime} \mathrm{Hg}$. Temperature of gas $=13^{\circ} \mathrm{C}$, Weight of water heated by gas $=28 \mathrm{~kg}$, Temperature of water at inlet $=10^{\circ} \mathrm{C}$, Temperature of water aCoutlet $=23.5^{\circ} \mathrm{C}$, Steam condensed $=0.06 \mathrm{~kg}$. Determine the higher and fower calorific values per m_{3} of the gas at a temperature of $15^{\circ} \mathrm{C}$ and barometric pressure of 76 cm of Hg .

Q6) a) The gravimetric analysis of a sample of coal is given as $82 \% \mathrm{C}, 10 \% \mathrm{H}_{2}$ and 8% ash. Calculate: The stoichiometric A/F ratio and the analysis of the products by volume.
b) The chemical formula for alcoగol is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$. Calculate the stoichiometric air/fuel ratio by mass and the percentage composition of the products of combustion per Kg_{6} of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.
c) Explain adiabatic flame temperature?

Q7) a) Give the elassification of boilers.
b) Derive an expression for the diameter of chimney.
c) Draw a neat sketch of Cochran boiler. Name different parts of the boiler.

OR

Q8) a) Differentiate fire tube boilers and water tube boilers.
b) Diraw a neat sketch of fusible plug and explainits construction and working.
c) Give the classification of draught. List bout Merits of Natural Draught. [6]

