Total No. of Questions: 8]	260	SEAT 1
PA-1280		[r

SEAT No.:			
[Total	No	of Pages	1

[5925]-305

S.E. (Mechanical/Automation & Robotics Engg.) ENGINEERING MATERIALS AND METALLURGY (2019 Pattern) (202044) (Semester - III)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Near diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Logarithmic tables, slide rule, electronic pocket calculator is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) Define the following with the help of a neat sketch.

[5]

- i) Ordered Substitutional Solid Solution
- ii) Disordered Substitutional Solid Solution
- b) What is meant by a binary Solid Solution alloy, draw the cooling curve of a typical solid solution alloy. [5]
- c) What is a peritectic transformation? Show the peritectic point on Fe-C phase diagram. Evaluate the percentage of constituent elements at the peritectic point. [8]

OR

- (22) a) Explain how the following factors affect the nucleation process and graph the effect as a function of temperature. [5]
 - i) Nucleation Rate.
 - ii) The Growth Rate
 - b) What is Gibb's phase rule? Explain the various terms involved in it. [5]
 - c) What is an Eutectoid transformation? Show the Eutectoid point on Fe-C phase diagram. Evaluate the percentage of constituent elements at the Eutectoid point. [8]

P.T.O.

<i>Q3</i>)	a)	State the difference between Martensite and Pearlite on the basis of the Following points. [5]		
			ار	
		ii) Microstructure		
		iii) Cooling rate		
		iv) Properties		
		v) Application		
	b)	Give any two reasons why Hypereutectoid steels in an Iron-Carbon Allo	ΟV	
		are annealed from above the lower critical temperature (A ₁) but nev		
		from above the upper critical temperature (A_{cm}) .	5]	
	c)	Describe the induction hardening technique and its two advantages ar	nd	
	C)		7]	
		6.		
		OR		
<i>Q4</i>)	a)	What is retained austenite? Write any two advantages and one disadvantage	ge	
~			5]	
	b)	State the difference between Angeling and Normalizing with reference	to	
	b)	State the difference between Annealing and Normalizing with reference the following points?	5]	
		i) Procedure	٦]	
		ii) Microstructure		
		iii) Mechanical properties imparted after the process	0	
		iv) Internal Stresses	3	
		v) Grain size distribution	5	
			<i>Y</i>	
	c)	Show the following heat treatment cycles on a common Isotherm		
			7]	
		i) Martempering		
		ii) Austempering		
		also state the reason why the Austempering processes is expensive?		
Q 5)	a)	What is the content of carbon in Low Carbon Steel? State two Properties		
		and two applications of Low Carbon Steel	5]	
		6.		
		96.		
[<i>E</i> 0.4	- 7	205		
[374	رد، ا[د،	-305		

	b)	What type of stainless steel would you prefer for the following and Why	
			5]
		i) Razor Blades	
		ii) Wrist watches	
	c)	Explain the manufacturing process of a Malleable Cast Iron with the he of a Time – Temperature plot. State any four applications of Malleab Cast Iron. OR	-
Q6)	a)	What is the content of carbon in High Carbon Steel? State two Properties and two applications of High Carbon Steel.	es 5]
	b)	State the composition of the following steels which are designated as p Indian standard Designation system. i) 25 C5 ii) 35 Mn 1 S 18	er 5]
	c)	Explain the effect of the following factors on the microstructure are properties of Cast Iron.	nd 8]
		i) Amount of total phosphorous, silicon and the equivalent carbo due to the presence of them (phosphorous and silicon)	on
		ii) Rapid cooling, Slow cooling	3
Q 7)	a)	What is 85-5-5 bronze? State any three applications of it.	5]
	b)	What is the percentage of Zinc in Gilding metals? State any four uses	of
		. 7)	5]
	c)	What is Nickel's crystal structure? Give the composition, at least or	ne
	•	property and use of the Nielral Alleys listed halo	7]
		i) Invar	
		ii) Inconel	
		i) Invar ii) Inconel OR	
[592	25]-	-305	

Q 8)	a)	What are bearing materials? Give the composition of the following bear material.	ing [5]
		i) White Metal Alloys	
		ii) Copper-Lead Alloys	
	b)	List any two materials that are commonly used in additive manufacturing. Also, for each of them, mention two areas of Application.	ng. [5]
	c)		ast [7]
		i) Y-Alloy	
		ii) Hinduminium	
		62	

			3
		19.28.26.21 19.28.216.21	
		-305 4 9.248.25.288.25.20.25.28.25.28.25.28.25.28.25.28.25.28.25.28.25.28.25.28.25.28.25.	
[592	25].	-305	