[5925]-306

S.E. (Automobile \&Mechanical/Mechanical Sandwich) ELECTRICAL AND ELECTRONICS ENGINEERING (2019 Pattern) (203156) (Semester - III)

Time: 2½ Hours]
[Max. Marks : 70

Instructions to the candidates :

1) Attèmpt Question 1 or 2,3 or 4,5 or 6,7 or 8.
2) Neat diagrams must be drawn wherever necessary.
3) Figurescto the right indicate full marks.
4) Assume suitable data, if necessary.

Q1) a) Derive the emf equation of a DC machine and explain the significance of emf induced in a DC motor.
b) A $220 \mathrm{~V}, \mathrm{DC}$ shunt motor runs at 1000 rpm when the armature current is 25 A . Calculate the speed if the torque developed is doubled. Given that armature resistance is 0.25Ω.
c) Explain rheostatic control and field control methods of controlling speed of a DC shunt motor.

Q2) a) Draw and explain thé characteristics of a DC shunt motor.
b) A $230 \mathrm{~V}, 4$ pole lap wound DC shunt motor takes no-foad current of 4 A when running at $1200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The resistance of armature winding is 0.1Ω and shunt field winding is 115Ω. Total brush contact drop is 2 V . If it takes current of 60 A on full-load, calculate its full load speed. Assume that flux gets weakened by 5% on full-load condition due to armature reaction.
c) What is braking in a motor? Explain regenerative braking of DC shunt motor with the help of neat diagrams.

Q3) a) Derive the expression for the torque degeloped in a three phase induction motor under running conditions.
b) A 6 pole, 50 Hz , three phase indúction motor running on full load with 4% slip develops a torque of 149.3 N -m at its pulley rim. The friction and windage losses are 200 W ognd the stator copper and iron losses equal 1620 W. Calculate i) ottput power ii) rotor copper losses and iii) \% efficiency at fullyoad. 3°
c) Explain the operation of star-delta starter for a three phase induction motor with neat schematic.

OR

Q4) a) Draw andexplain the torque-slip characteristics fonthe three phase inductionmotor.
b) A 3 ., 6 pole, 50 Hz induction motor has a slip o 1 at fell load. Determine : i) Synchronous speedii) No load speed iii) Full Ooád speed iv) Frequency of rotor current atits standstill v) Frequency of \star rotor current at full load.
c) Differentiate between slip ring and squinrel cage induction motor.

Q5) a) State and explain the components' and subsystems of Hybrid Electric Vehicle (HEV).
b) Explain the configuration offa Parallel Hybrid EV.
c) Draw and explain Vehicle to Grid (V2G) technology with the help of suitable block diagram.

Q6) a) Compare the series and parallel configurations of Hybrid Electric Vehicle (HEV).
b) Differentiate between Battery EV and Plug-inEV.
c) Elaborate the impact of usage of EV on power grid.

Q7) a) Write voltage, specific energy, C-rate, cycle life, thermal runaway and applications of LFP battery.
b) Draw the block diagram of Batatery Management System (BMS) and explain the working of it.
c) Explain the factors for selection of motors for an EV.

Q8) a) State advantages and disadvantages of LMO Battery.
b) Explain the operation of a BLDC motor drive for an EV with the help of a block diagram.
c) Elaborate the factors used in selection of a battery for an EV.

