Total No. of Questions-8]

Seat

No.

[Total No. of Printed Pages—5

[5459]-119

S.E. (Mech./Prod./Auto) EXAMINATION, 2018

(Common to Mech. & Mech. S/W)

ENGINEERING MATHEMATICS—III

(2015 PATTERN)

Time : Two Hours

Maximum Marks : 50

- N.B. := (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use of electronic pocket calculator is allowed.
 - (iv) Assume suitable data, if necessary.

1. (a) Solve any two of the following differential equations :

(i)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = x^2 + x + 1$$

(ii) $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 3y = \sin(\sqrt{3}\log x) + x^3$

(*iii*) $\frac{d^2y}{dx^2} + 4y = \tan 2x$, by using the method of variation of parameters.

(b) Solve the integral equation :
$$(a)$$
 [4]

$$\int_{0}^{\infty} f(x) \sin \lambda x \ dx = 4e^{-6\lambda}, \lambda > 0.$$

P.T.O.

- Or A 4 lb weight is suspended at one end of the spring suspended 2. (a)from ceiling. The weight is raised to $\left(\frac{5}{12}\right)$ feet above the equilibrium position and left free. Assuming the spring constant is 8 lb/ft, find the equation of motion, displacement function, amplitude and period. [4]
 - Solve any one of the following : *(b)*
 - (i) Evaluate the integral $\int e^{-4t} t \cos t dt$, by using concept of

[4]

Laplace transform.

ii) Obtain $L^{-1}\left[\frac{s+1}{(2s-1)(s+2)}\right]$.

1

 $\mathbf{2}$ 3

4

 $\mathbf{5}$

6 7

8

where y(0) = 0,

Solve the following differential equation by using the Laplace transform method : [4]

> f 1

8

56

56

1

2.26

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = te^{-2}$$

y'(0) = 2.

Calculate the first four moments about the mean of the following 3. (a)8 (4] frequency distribution :

[5459]-119

 $\mathbf{2}$

- (*b*) 200 students appeared in a certain examination obtained average marks 50% with standard deviation 5%. How many students do you expect to obtain more than 60% of marks, supposing that the marks are distributed normally. [4] (Given : At z = 2, A = 0.4772)
- Find the directional derivative of $\phi = x^2 y^2 2z^2$ at the point *(c)* P(2, -1, 3) in the directional PQ, where the point Q is Q(5, 6, 4).[4]

Or

Obtain the regression line of y on x for the following 4. data : [4]

у

10

11

 $\mathbf{5}$

10

6

201202030.25.

(*b*) Prove the following (any one) :

x

 $\mathbf{5}$

1

10

3

9

(i)
$$\nabla \cdot \left(r \nabla \frac{1}{r^5}\right) = \frac{15}{r^6}$$

(ii) $\nabla^2 \left[\frac{1}{r}\log r\right] = \frac{-1}{r^6}$

(ll)Show that the vector field :

[4]

[4]

$$\overline{\mathbf{F}} = (8xy + z^4)\overline{i} + (4x^2 - z)\overline{j} + (4xz^3 - y)\overline{k}$$

is irrotational. Also find the scalar ϕ such that $\overline{F} = \nabla \phi$.

[5459]-119

(c)

P.T.O.

- Evaluate $\int_{-}^{\vec{F}} \vec{F} \cdot d\vec{r}$ where $\vec{F} = e^{y}i + x(1 + e^{y})j$ and 'C' is the curve *(a)* 5. of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, z = 0$. [5]
 - Evaluate $\iint [(z^2 x) dy dz xy dx dz + 3z dx dy]$ where S is closed (*b*) surface of region bounded by x = 0, x = 3, z = 0, $z = 4 - y^2$ by using Gauss divergence theorem. . [4] By using Stokes' theorem evaluate $\iint \nabla \times \overline{\mathbf{F}} \cdot \hat{n} \, d\mathbf{S}$ where S is (c)the curved surface of the paraboloid $x^2 + y^2 = 2z$ bounded by the plane z = 2 where $\vec{F} = 3(x - y)i + 2xzj + xyk$. [4]
- Using Green's theorem evaluate $\int [\cos x \sin y 4y] dx + \sin x$ **6**. (a) $\cos y \, dy$] where C is the circle $x^2 + y^2 = 1$. [5]

Or

Using Gauss divergence theorem evaluate $\iint (lx + my + nz)dS$ where *(b)* l, m, n are direction cosines of the outer normal to the surface \frown $x^2 + y^2 + z^2 = 4,$ [4]

×[4]

902 × 55

By using Stokes' theorem prove that : (c)

$$\int_{\mathbf{C}} (\vec{a} \times \vec{r}) \cdot d\vec{r} = 2\vec{a} \cdot \iint_{\mathbf{S}} d\vec{\mathbf{S}}.$$

Solve the equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$, under conditions : (a)[7](i)u(0, t) = 0(ii) $u(\pi, t) = 0$ $\frac{\partial u}{\partial t} = 0$ when t = 0(*iii*) (iv) $u(x, 0) = 2x, 0 < x < \pi$.

[5459]-119

7.

4

(b) Solve
$$\frac{\partial u}{\partial t} = e^{2} \frac{\partial^{2} u}{\partial x^{2}}$$
, under the condition : [6]
(i) $u(0, t) = 0$
(ii) $u(1, t) = 0$
(iii) $u(x, 0) = 100\frac{x}{t}$, $0 < x < t$.
Or
8. (a) Solve the equation : [6]
 $\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = 0$ which satisfies the conditions :
 $u(0, y) = u(\pi, y) = 0$ for all y
 $u(x, 0) = k$, $0 < x < \pi$, $\lim_{y \to w} u(x, y) = 0$, $0 < x < \pi$
(b) Use Fourier transform to solve the equation : [7]
 $\frac{\partial u}{\partial x} = \frac{\partial^{2} u}{\partial x^{2}}$, $0 < x < \infty$, $t > 0$ subject to conditions
(i) $u(0, t) = 0, t > 0$
(ii) $u(x, 0) = \begin{bmatrix} 2 & 0 < x < 1 \\ 0 & x > 1 \end{bmatrix}$
(iii) $u(x, t)$ is bounded.