Total No. of Questions : 4]

PC-54

SEAT No. :

[Total No. of Pages : 2

Max. Marks : 30

[6360]-55

T.E. (Information Technology) (Insem) THEORY OF COMPUTATION (2019 Pattern) (Semester - I) (314441)

Time : 1 Hour]

Instructions to the candidates :

- 1) Answer Q1 or Q2, Q3 or Q4.
- 2) Neat Diagrams must be drawn wherever necessary
- 3) Figure to the right indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) Design a Moore machine to find 2's complement of any binary number.Write the definition of a Moore Machine. [4]
 - b) Find the final DFA (Deterministic Finite Automata) by performing the DFA minimization process. [5]

DFA minimization process.				
	State/input	00	1	
	$\rightarrow \hat{q}_0$	q1	q ₀	
	<u>q</u> ₁	q ₀	q_2	
	q_2	q ₃	q ₁	
	q &	q_3	q_0	
\sim	\mathbf{q}_4	q ₃	q ₅	
\sim	q_5	q_6	q_4	Q' Q'
Κ	q_6	q_5	q_6	
	q ₇	q_6	q ₃	2 22
Write the for	mal definition	ns for th	e following	

[6]

- i) DFA (Deterministic Finite Automata)
- ii) Finite State Machine
- iii) NFA (Non- Deterministic Finite Automata) with ε moves

OR

- *Q2*) a) Construct a Moore machine for a binary input sequence such that if it has a substring '110', the machine outputs A; if it has a substring '101', the machine outputs B, otherwise machine outputs C. [5]
 - Show that following DFAs (Deterministic Finite Automata) are b) equivalent or not. [5]

- Justify that there can be the equivalent Mealy machine for any Moore c) machine by suitable example. [5]
- For the following regular expressions, draw the FA (Finite Automata) *Q3*) a) recognizing the corresponding language. [5]
 - $ab^* + ba^* + b^*a + (a^*b)^*$ ٥X
 - b*a (a+b)*ab* ii)
 - State and explain Pumping Lemma for a regular language. b) [5]
 - Find the regular Expression for the FA (Finite Automata) using Arden's c) Theorem. [5]

- OR
- **Q4**) a) Use pumping lemma to check whether the language $L = \{0^n 1^n | n > = 0\}$ is regular or not.
 - Represent the following language using regular expression over [5]

[5]

- $\Sigma = \{0,1,2\}$ for the following
- At least one occurrence of 0 followed by at least one occurrence i) of 1 followed by at least one occurrence of 2°
- Any number of 0's followed by at least one occurrence of 1 ii) followed by at least one occurrence of 20
- Prove that if R = P + RQ or R = RQ + P then $R = PQ^*$ (Arden's c) Theorem) Where, P,Q and R are regular expressions. [5]

[6360]-55

b)