1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Assume suitable data, if necessary.

Q1) a) Consider $0 / 1$ knapsack problem $\mathrm{N}=3: \mathrm{W}=(4,6,8$) and $\mathrm{P}=(10,12,15)$.by using dynamic programming determine the optimal profit for knapsack Capacity 10 ?
b) ${ }^{\text {Explain coin change Making probrem in détail? }}$

Q2) a) Explain how dynamic programming is used to obtain optimal solution for travelling salespersonproblem. also explain why this technique is not used to solve TSP for large number of cities?
b) What is dynamic programming? Is this the optimization technique? Give? reasons what are its drawbacks?

Q3) a) Find all possible solutions for 5 queens problem using backtracking.[9]
b) Current configuration is $(7,5,3,1)$ for 8 queens problem. Find fete answer tuplc using backtracking method.

OR
Q4) a) State the principle of backtracking. Explain the constraints used in backtracking with an example.
b) What is m colorability optimization problem. Explain with an example.[8]

Q5) a) Differentiate between backtracking \& branch and bound. Illustrate with example of Knapsack problem.
b) Solve following Job sequencing with deadline problem using Branch and Bound.

Job	P	d	t
1	5	1	1
2	10	3	2
3	6	2	1
4	3	1	1

OR
Q6) a) Solve the following instance of the knapsack problem by branch and bound algorithm for $\mathrm{W}=16$.

12	Weight	Value in Rs.
2	10	100
3	7	63
4	4	56

b) Describe the following with respect to B \& B

- The method
- LC search
- Control abstraction for LC search
- Bounding function

Q7) a) When do you claim that algorithm is polynomial time algorithm? Explain with an example.
b) Explain i) Complexity Classes ii) Deterministic Algoitioms.

OR

Q8) a) Explain Vertex cover problem is in detail.
b) What is deterministic algorithm? Write any one deterministic algorithm.

