Total No. of Questions :6]

P75

SEAT No. :

[Total No. of Pages :3

Oct./ TE/ Insem. - 194

T.E. (Information Technology)

OPERATING SYSTEM

(2015 Course) (Semester - I) (314444)

Time : 1 Hour]

[Max. Marks:30

Instructions to the candidates.

- *1*) Answers Q1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- Neat diagrams must be drawn wherever necessary. 2)
- Figures to the right side indicate full marks. 3)
- Assume suitable data, if necessary. **4**)
- Write C program for fork system call in which main program accept the *Q1*) a) array, parent process sort and display the element in ascending order whereas child process sort and print elements in descending order by using any sorting strategy. **[6]**
 - Explain the difference between the monolithic kernel and a microkernel b) with advantages and disadvantages. [4]

6R

- Explain the concept of virtual machine with its implementation and benefits *Q2*) a) Also explain example of virtual machine. 6
 - State and explain different services provided by an operating system [4] b)
- For the table given below calculate the average waiting time and average Q3) a) 🧃 turn around time and draw a Gantt Chart illustrating the process execution 30,000 using following scheduling algorithms. [8]
 - RR (Time slice -2 units) i)
 - ii) SJF (non-preemptive)

Process	Arrival Time	Burst time
P1	0	10 0
P2	1	06
P3	2	12
P4	3	15
	•	\odot

b) How PCB helps in process management? Explain the structure of PCB.

[2]

[8]

[2]

Q4) a) For the table given below calculate the average waiting time and average turn around time and draw a Gantt Chart illustrating the process execution using following scheduling algorithms.

OR

i) RR (Time slice - 2 units)

••\

	11) FCF			
	Process	Arrival Time	Burst time	
	P1	0	4	
	P2	1	5	
	P3	2	2	
	P4	3	1	
2	P5	4		
	P6	6	39	

- b) Differentiate between thread and process.
- **Q5**) a) Consider the following snapshot of a system:

					(),"							
		Alloc	ation),	6. Maximum			Available				
	A	В	С	Po.	A	В	С	D	A	В	С	Ð
P0	0	0	10	2	0	0	1	2	1	5	2	0
P1	1	0	0	0	1	7	5	0	~	5	0.	
P2	1	3	5	4	2	3	5	6	0			
P3	0	6	3	2	0	6	5	2		6		
P4	0	0	1	4	0	6	5		N.			

Answer the following question using banker's algorithm.

- i) What are the contents of need matrix?
- ii) Is system in a safe state?

TE/ Insem. - 194

b) Write a Semaphore solution for reader-writer problem.

OR

Q6) a) What is busy waiting with respect to process synchronization? Explain how semaphore solves problem of synchronization. [6]

9.240.200 2.100 2.10.200 10.20

b) How resource allocation graph helps to deadlock? Write the necessary conditions of deadlock to be occurred. [4]

[4]