Total No. of Questions :6]

P5699

SEAT No. :

[Total No. of Pages :2

[Max. Marks :30

TE/INSEM./OCT.-145

T.E. (Information Technology) OPERATING SYSTEM

(2015 Pattern) (Semester - I)

Time : 1 Hour]

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) What is operating system? State and explain the basic functions of Operating System. [6]
 - b) Explain the following shell commands with example: [4]i) echo ii) grep iii) touch iv) ls

OR

- (Q2) a) Differentiate between monolithic and microkernel architectures. [4]
 - b) Write a shell script to check if given string is a palindrome or not. [6]
- Q3) a) For the table given below, calculate average waiting time and average turnaround time and draw a Gantt Chart illustrating the process execution using following scheduling algorithms.

i) Round Robin (time slice - 2 units) ii) Priority (non-preemptive)

	Process	Arrival Time	Burst Time	Priority
	P1	0	3	5
	P2	2	6	2
	P3	4	4	6 4
ſ	P4	6	5	3
	P5	8	2	1

Note: For priority scheduling, minimum value indicates higher priority.

- b) Suppose that a process spawns another process using fork system call.[2]
 What if the parent process completes the execution before child process?
 What if the child process completes the execution before parent process?
- Q4) a) For the table given below, calculate average waiting time and average turnaround time and draw a Gantt Chart illustrating the process execution using following scheduling algorithms. [8]

i) SJF (non-preemptive)

ii) Priority (Preemptive)

```````			<b>3</b> 1 /
Process	Arrival Time	Burst Time	Priority
P1	0 0	9	3
P2 0	1	1	2
P3	2	7	1
P4	3	1	5
P5	4	6	4

Note: For priority scheduling, minimum value indicates higher priority.

b) Differentiate between user level and kernel level threads.

[2]

[6]

- Q5) a) Explain the following terms:
  - i) Mutual Exclusion
  - ii) Synchronization
  - iii) Race condition

b) Differentiate between named pipe and unnamed pipe.

[4]

## OR

- Q6) a) Write a deadlock-free solution for dining philosophers problem using semaphore. [6]
  - b) Explain the necessary and sufficient conditions for the occurrence of a deadlock. [4]

2 × ×

TE/INSEM.-145