S.E. (Computer/Information Technology) ENGINEERINGMATHEMATICS - III

 (2019 Patterin) (Semester - IV)

 (2019 Patterin) (Semester - IV)}

Time: $2^{1 ⁄ 2}$ Hours]
[Max. Marks: 70
Instructions to the candidates:

1) Q. 1 is comptisory.
2) Attempt Q4,or Q.3,Q4 or Q5, Q6 or Q7, Q8 or Q9.
3) Neat diagrams misi be drawn wherever necessary.
4) Figuress to the nght indicate full marks.
5) Use of electronic pocket calculator is allowed.
6) Assume suitable data, if necessary.

Q1) Write the correct option for the following multiple choice questions.
a) For a given set of bivariate data, $\bar{x}=2, \bar{y}=\sigma^{\circ} 3$. The regression coefficient of x on y is -0.11 . By using the regression equation of x on y, the most probable value of x when $y=0$ is
i) 0.57
ii) 0.87
iii) 0.77
iv) 1.77
b) If Probability density function $f(x)$ of a continuous random variable x is defined by

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{4},-2 \leq x, 2 \\
0, \text { otherwise }
\end{array}\right.
$$

then $\mathrm{P}(x \leq 1)$ is \qquad .
i) $\frac{1}{4}$
iii) $\frac{1}{3}$

c) Lagrange's polynomial through the points

x	0	1	2
y	4	0	6

is given by \qquad .
i) $y=5 x^{2}-3 x+4$
ii) $y=5 x^{3}+3 x+4$
iii) $y=5 x^{2}-9 x+4$
iv) $y=x^{2}-9 x+4$
d) Using Gausselimination method, the solution of system of equations

i). $x=1, y=2, z=3$
ii) $x=\frac{1}{2}, y=1, z=\frac{1}{2}$
iii) $x=2, y=\frac{1}{2}, z=2$
iv) $x=1, y=\frac{1}{2}, z=-\frac{1}{2}$
e) The first four central mioments of a distribution are $0,16,-64$ and 162 . The coefficient of Kurtosis 9_{2} is \qquad .
i) $\quad 1.20$
ii) 0.6328
iii) 1
iv) 0.3286
f) If $f(x)$ is continuous on $[a, b]$ and $f(a) f(b)<0$. then tofind a root of $f(x)=0$, initial approximation x_{0} by bisection method is \qquad
i) $x_{0}=\frac{a-b}{2}$
ii) $x_{0}=\frac{f(a)+f(b)}{2}$
iii) $\quad x_{0}=\frac{a+b}{2}$
iv) $\mathfrak{x}_{0}=\frac{a-b}{a+b}$

Q2) a) If marks scored by five students in stâtistics test of 100 marks, are given in following table.

Student	1	2	3	4	5
$\operatorname{Marks}(/ 100) x$	46	34	52	78	65

Find standard deviationand arithmetic mean \bar{x}.
b) Fit a law of the form $y=a p+b$ by least square method for the data,

p	100	120	140	160	180	200
y	0.9	D	1.2	1.4	1.6	1.7

c) If the twodines of regression are $9 x+y-\lambda=0$ and $4 x+y=\bar{z}$ and the means of $x \& \&$ are $2 \&-3$ respectively. Find values of λ, μ and correlation coefficient between $x \& y$.

OR
Q3) a) The first four moments of a distribution about 5 are 2,20,40 and 50. Find ${ }_{\text {first }}$ four moments about mean, and $\beta_{1}, \beta_{0}^{\circ}{ }^{\circ}$
b) Fit a parabola $y=a x^{2}+b x+\infty$, by $a \sin$ g least square method to the following data,

x	0	1	2	3
y	2	2	4	8

c) Calculate the coefficient of correlation from the following information $\mathrm{n}=10, \Sigma x=40, \Sigma x^{2}=190, \Sigma y^{2}=200, \Sigma x y=150, \Sigma y=40$.

Q4) a) Bag 1 contains 2 white and 3 red balls. Bag 2 contains 4 whité and 5 red balls. One ball is drawn randomly from bag 1 and is placed in bag2. Later, one ball is drawn randomly from bag2. Find the probability that it is red.
[5]
b) The expected number of matches those ven be India in a series of five one day matches between India and England is three. If the probability of India's win in each match remains the same and the results of all the five matches are independent of each other, find the probability that India wins the series, using BinomiaTdistribution. Assume that each match ends with a result.
c) The lifetime of an article has a normabdistribution with mean 400 hours and standard deviation 50 hours. Find the expected number of articles out of 2,000 whose lifetime lies between 335 hours to 465 hours. (Given : $\mathrm{Z}=1.3, \mathrm{~A}=0.4032$)

Q5) a) Find the expected value of the number of heads obtained when three fair coins are tossed simultaneously.
b) On an average, 180 cars per hour pass a specified point on a particular road. Using Poisson distribution, find the probability that at least two cars pass the point in any one minute.
c) The Proportions of blood types $\mathrm{O}, \mathrm{A}, \mathrm{B}$ and AB in athe general population of accountry are known to be in the ratio 49:38:9:4 respectively. A research team observed the frequencies of the blood types as $88,80,22$ and 10 respectively in a community of that counry. Test the hypothesis at 5% level of significance that the proportions for this community are in accordance with the general population of that country. (Given: $\chi_{\text {tab }}^{2}=7.815$)

Q6) a) Find the root of the equation $x^{4}+2 x^{3}-x-1=0$, lying in the interval $[0,1\}$ using the bisection method at the end of fifth iteration.
b) Find a real root of the equation $x^{3}+2 x-5=0$ by applying Newton-Raphison method at the end of fifth iteration.
c) Solve by Gauss-Seidel method, the system of equations:

$$
\begin{aligned}
& 20 x_{1}+x_{2}-2 x_{3}=17 \\
& 3 x_{1}+20 x_{2}-x_{3}=-18 \\
& 2 x_{1}-3 x_{2}+20 x_{3}=25
\end{aligned}
$$

Q7) a) Solve by Gauss elimination method, the system of equations:

$$
\begin{aligned}
& 2 x_{1}+x_{2}+x_{3}=10 \\
& 3 x_{1}+2 x_{2}+3 x_{3}=18 \\
& x_{1}+4 x_{2}+9 x_{3}=16
\end{aligned}
$$

b) Solve by Jacobi's iteration method, the system of equations:
$4 x_{1}+2 x_{2}+x_{3} \leq 14$
$x_{1}+5 x_{2}-x_{3}=10$
$x_{1}+x_{2}+8 x_{3}=20$
c) Use Regula-Falsi method to find a real root of the equation $e^{x}-4 x=0$ correet to three decimal places.

Q8) a) Using Newton's forward interpolation formula, find y at $x=8$ from the following data.

x	0	5	10	15	20	25
y	7	11	$14)$	18	24	32

b) Evaluate $\int_{0}^{1} \frac{d x}{x^{2}+1}$

c) Use Euler's method, to solve $\frac{d y}{d x}=x+y,(0) y=1$

Tabulate values of y for $x=0$ to $x=0.3$ (Take $h \ni \theta .1$)

Q9) a) Use Runge-Kutta method of $4^{\text {th }}$ order, to solve

$$
\begin{equation*}
\frac{d y}{d x}=x y, y(1)=2 \text { at } x=1.2 \text { with }=0.2 \text {. } \tag{5}
\end{equation*}
$$

b) Using Modified Euler'smethod, find $\mathrm{y}(0.2)$,

$$
\text { given } \frac{d y}{d x}+x y^{2}=0, y(0)=2 \text { Take } \mathrm{h}=0.2 \text { (Two iterations only) }
$$ from the following data

x	150	152	154	156
$y_{0}=\sqrt{x}$	12.247	12.329	12.410	12.490

