

Total No. of Questions: 8] PD-4095			estions: 8]	SEAT No.:	
				[Total	No. of Pages : 4
			[6402]-55		
			S.E. (I.T)		
			DISCRETE MATHEM	IATICS	
		((2019 Pattern) (Semester - 1	III) (214441)	
Time	$e: 2^{1/2}$	Hou	rs]	[M	ax. Marks : 70
Insti	ructio	ons to	the candidates:		
	1)	Atte	wot Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6,	Q.7 or Q.8.	
	<i>2</i>)	Figu	wes to the right indicate full marks.	100	
	3)	Drav	w neat figures wherever necessary.	7	
	<i>4</i>)	Use	of scientific calculator is allowed.	STO.	
	<i>5</i>)	Assu	ome suitable data, if necessary.	10	
				6.	
	6	*		5	
)	
Q1)	a)		ermine the number of edges in a gra	•	_
		2,4	of degree 3 and 2 of degree 4. Draw	one such graph	ns. [6]
	b)	Con	struct an optimal tree for the weigh	ts 8.9.10, 11, 1	3. 15. and 22.
	- /		I the weight of the optimal tree.		[6]
	c)	Finc	I the chromatic number with the hel	p of graph color	ring for: 16]
		i)	K6 (complete graph with 6 vertices	3)	.05
		-)			6.
		ii)	Any complete bipartite graph.	9,	
		iii)	C7 (cyclic graph with 7 vertices).	3	0'
			Critices).	0,0)
	1		OR	R	
Q 2)	6)	Dof	ine with graph:	0, 0,	[6]
Q2)	<i>a)</i>	Den	me with graph.		լսյ
	4	1)	Complete Graph		
		ii)	Regular Graph	p of graph color	
		iii)	Bipartite Graph	<i>Y</i>	

P.T.O.

b) Determine the Fundamental system of Cutsets for the following Graph G with respect to the given spanning tree T.

Using labelling procedure, find the max flow for the following transport c) network.

Consider the following relations on $\{1, 2, 3, 4\}$: **Q3**) a) **[6]**

- R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\$
- $R2 = \{(1, 1), (1, 2), (2, 1)\}$
- $R3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},\$
- $R4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},\$
- $R5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 4), (3, 4), (4,$ (4, 4)
- $R6 = \{(3, 4), (4, 3)\}$

Which of these relations are reflexive or irreflexive or neither?

- Solve the following recurrence relation b) $ar+7a_{r-1}+10a_{r-2}=2^{r}$ where, a1=3, a2=6
- Functions, f, g & h are defined on the set X=(1,2,3) at $f = \{(1, 2), (2,3), (3, 1)\}$ $g = \{(1, 3), (2, 1), (3, 2)\}$ $h = \{(1, 2), (2, 1), (3, 3)\}$ i. Find hog and goh. Are they equals? ii. Find hogof and gohof. c)

$$h = \{(1, 2), (2, 1), (3, 3)\}$$

[5]

[6]

Consider these relations on the set of integers: **Q4**) a)

$$R1 = \{(a, b) \mid a \le b\},\$$

$$R2 = \{(a, b) \mid a > b\},\$$

$$R3 = \{(a, b) \mid a = b \text{ or } a = b\}$$

R4=
$$\{(a,b) \mid a = b\},\$$

R5=
$$\{(a,b) \mid a=b+1\},\$$

$$R6 = \{(a,b) \mid a+b \le 3\}$$

Which of these relations contain each of the pairs (1, 1), (1, 2), (2, 1), (1, -1), and (2, 2)?

Let R be a relation on set A = (0, 1, 2, 3, 4). Which ordered pairs are in b) the relation R represented by the matrix? M_R is as given below. List the ordered pair to find the reflexive closure and symmetric closure.

0	d>	1	0	0
1	0	0	1	1
Ø.	1	1	1	1
0	1	1	0	0
0	0	1	0	1

Let $A = \{2, 3, 4, 5, 6\}$ where R_1 and R_2 be the relation on A such that c) $R_1 = \{(a, b) \mid a - b = 2\}$ and $R_2 = \{(a, b) \mid a+1 = b \text{ or } a = 2b\}$. Find $R_1 R_2 = \{(a, b) \mid a+1 = b \text{ or } a = 2b\}$. R_2R_1 , $R_1R_2R_1$ also verify $(R_1R_2)^c = R_2^cR_1^c$

Using Euclidean Algorithm find GCD of 189 & 462. **Q5**) a)

Using the Chinese Remainder Theorem find the value of X such that: b)

$$X = 1 \mod 3$$

$$X = 2 \mod 5$$

$$X = 9 \mod 11$$

[10]

Determine quotient and remainder for the following:

i. 97/11

ii. -97/11

OR

[4]

[6402]-55

Q6)	a)	Find the Euler's Totient function of the following numbers:
		i. 10
		ii. 100
		iii. 1024 [6]
	b)	Find the multiplicative inverse of 35 mod 96 using Extended Euclidean Algorithm. [6]
	c)	Using Euler's Theorem and Binary expansion method solve the following (Show step-wise answer) 19^155 mod 55. [6]
Q7)	a)	Find the hamming distance between x and y
		• x=1101010 y=1010000
		• x=0111110 y=0111011
		•x=00101001 y=10101011
	0	x=11000010 y=00100101 [4]
	b)	Let P be the set of all matrices of the form [[x x],[xx]] where x is a non-zero rational number. * is the matrix multiplication defined over P. + is an addition approximately and the control of the con
	-)	addition operation. Show that (P, +, *) is a Commutative Ring. [10]
	c)	Define Abelian Group considering all five properties. [3] OR
Q8)	a)	Show that the $(2,5)$ encoding function e:B2 \rightarrow B5 defined by e(00)=00000, e(10)=10101,e(01)=01110, e(11)=11011 is a group code.
	b)	Let $Z_n = \{0, 1, 2, \dots, n-1\}$. Let \oplus a binary operation on Z_n such that for a and b in Z_n

$$a \oplus b = a + b$$
 if $a + b < n = a + b - n$ if $a + b > = t$ [6]

6}. Find the [5]

a⊕b= a+b if a+b < n = a+b-n if a+b > = a
Let, f and g be two permutations on a set X = {1, 2, 3, 4, 5, product of f and g and also find the cycles in f and g.

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 1 & 4 & 2 \end{bmatrix} g = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 5 & 3 & 4 & 2 \end{bmatrix}$$

★ ◆ ◆