\square

S.E. (Information Technology) (Artíficial Intelligence \& Machine Learning) DISCRETEMATHEMATICS (214441, 218541) (2019 Pattern) (Semester - III)

Time: $2^{1 ⁄ 2} 2$ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Solve Q.1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate fill marks.
4) Assumesiuitable data, if necessary.

Q1) a) Show that the maximum number of edges in asimple graph with n vertices is n.(n-1)/2.
b) Construct an optimal tree for the weights $3,5,9,18,30,40,55$. Find the weight of the optimal tree
c) Using the labelling procedure, find the max flow for the following transport network.

Q2) a) Determine the number of edges in a graph witha nodes, 2 of degree 4, 2 of degree 3 and 3 of degree 2. Draw one such graph.
b) Find the fundamental system of cutsets and fundamental system of the circuit for graph, G with respect to, the spanning tree, T.

c) Find the chromatic number with the help of graph coloring for:
i) K6 (complete graph with 6 vertices)
ii) Anycomplete bipartite graph.
iii) C (cyclic graph with 7 vertices).

Q3) a) Consider these relations on the set of integers

$$
\begin{aligned}
& \text { RI }=\{(a, b) \mid a \leq b\} \\
& R 2=\{(a, b) \mid a>b\} \\
& R 3=\{(a, b) \mid a=b \text { or } a=-b\} \\
& R 4=\{(a, b) \mid a=b\} \\
& R 5=\{(a, b) \mid a=b+1\} \\
& R 6=\{(a, b) \mid a+b(3)\}
\end{aligned}
$$

Which are symmetric and which are antisymmetric?
b) Functions, $f, g \& h$ aredefined on the set $\mathrm{X}=\{1,2,3\}$ as

$$
\begin{aligned}
& f=\{(1,3),(2,1),(3,2)\} \\
& \mathrm{g}=\{(1,2),(2.3),(3,1)\} \\
& \mathrm{h}=\{(1,2),(2,1),(3,3)\}
\end{aligned}
$$

i) Find fog and gofs Are they equals?
ii) Find fogoh and fohog.
c) If $A=\{a, b, c, d\}$ and $R=\{(a, b),(c, d),(c, d),(d, a),(a, a),(b, b),(d, d)\}$ is a relation on A . Draw a digraph R and R .

Q4) a) Let $\mathrm{A}=\mathrm{B}$ be the set of real numberso
$f: a \rightarrow>$ given by $f(x)=2 x^{3}-1$
$g: \mathrm{B}->$ A given by $g(y)=\sqrt[5]{\frac{1}{2} y+\frac{1}{2}}$
Show that f is a bijection between A and B and g is a bijection between B and A .
b)

(1) Find the lower and upper bounds of the subsets $\{a, b, c\},\{j, h\}$, and $\{\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{f}\}$ in the post with the Hasse diagram shown in Figure?
ii) Find the greatest lower bound and the least upper bound of $\{\mathrm{b}, \mathrm{d}, \mathrm{g}\}$, if they exist, in theyóst shown in Figure?
c) Solve the following recurrencerelation

$$
a_{r}-3 a_{r-1}=2, \quad, \quad=10 a_{0}=1
$$

Q5) a) Using Euclidean Algorithm find GCD of $268 \& 884$.
b) Using Fermat's Theorem and Fermat's Euler Theorem solve the following:[6]
i) $7^{\wedge} 121 \bmod 4$
ii) $11^{\wedge} 100 \bmod 17$
c) Find the multiplicative Inverse of 37 mod 26 using Extended Euclidean Algorithm.

Q6) a) Using the Chinese Remainder Theofem, find the value of P using the following data.
$\mathrm{P}=1 \bmod 2$
$\mathrm{P}=2 \bmod 3$
$\mathrm{P}=3 \bmod 5$
b) State and explain Fermat - Euler's Theorem with example.
c) Find the Totient function of the following numbers:
i)
ii) 143
iii) 108 .

Q7) a) Let $\mathrm{G}=\{$ even, odd) and binary operation © be define as,

\oplus	even	odd
even	even	odd
odd	odd	even

Show that (G, \oplus) is a group
b) Define the following terms with an example :
i) Monoid
ii) Group

iii) Abelian gromp ${ }^{\circ}$

iv) Ring

Find the hamming distance between code words of: $\mathrm{C}=\mathrm{Y}^{\prime}(0000),(0101)$, (1011), (0111), (1111)\}

Rewrite the message by adding an even parity check bit and odd parity check bit.

Q8) a) Consider the $(2,6)$ encoding functione. $e(00)=100000$, $\mathrm{e}(10)=101010$ $e(01)=001$ 110, e(11)=101001
i) Find the minimum distanceof e
ii) How many errors wilrédetect?
b) Let I be the set of ill integers. For each of the following determine whether * is an associative operation or not :
i) $a * b=\max (a, b)$
ii) $\quad a * b=$ mina $(a+2, b)$
iii) $a \cdot b=2 a-2 b$
iv) $a * b=\min (2 a-b, 2 b-a)$
v) $)^{2} * b=\operatorname{LCM}(a, b)$
vi) $a * b=a / b$
vii) $\mathrm{a}^{*} \mathrm{~b}=\operatorname{power}(\mathrm{a}, \mathrm{b})$
viii) $a^{*} b=a^{2}+2 b+a b$
c) Define field with an exaniple.

