\square
[Total No. of Pages : 4

S.E.(TT)
 DISCRETE MATHEMATICS
 (2019 Pattern)(Semester-III) (214441)

Time: $\mathbf{2 ¹}^{1 ⁄ 2}$ Hours]
[Max. Marks: 70
Instructions to the candidates:

1) Answer Q.1,or Q2, Q3or Q4, Q5 or Q6, Q7 or Q8.
2) Figures to the right indicate full marks.

Q1) a) Find the Shortest Path algorithm using Dijikstra's Shoftest path algorithm.
b) Construct an optimal tree for the weights 3, 4, 5, 6, 12 Find the weight of the optimal tree.
c) Find the maximum flow forthe following transport network.

OR

Q2) a) Define Following with examples:
i) rooted tree
ii) Spanning tree
iii) Binary Tree
b) Use nearest Neighbourhood method to solve Travelling Salesman problem.

c) Explain Hamiltonian and Euler path and circuits with'example.

Q3) a) $X \in\{2,3,6,12,24,36\}$ and $x<=y$ iff x divides y. Find
i) Maximal Element
ii) Minimal Element
iii) Draw the graph and its equivalent hasse diagram for divisibility on the set: $\{2,3,6,12,24,36\}$.
b) What are the ordered pairsin the relation R represented by the directed graph shown in below Fígares?

c) Let functions f and g be defined by

$$
f(\mathrm{X})=2 \mathrm{X}+1, \mathrm{~g}(\mathrm{X})=\mathrm{X}^{2}-2
$$

Find
i) gof (4) and fog (4)
ii) gof $(a+2)$ and fog $(a+2)$
iii) fog (5)
iv) gof $(a+3)$
v) $\operatorname{gof}(a+4)$

Q4) a) What is the reflexive closure of the relation $R=\{(a, b) \mid a<b\}$ on the set of integers and symmetric closure of the relation $R=\{(a, b) \mid a>b\}$ on the set of positive integers?
b) Determine whether the relation§for the directed graphs shown in Figure are reflexive, symmetric, antisymmetric, and/or transitive.

c) Let $X \Rightarrow\{a, b, c)$. Define $f: X->X$ such that $f=\{(a, b),(b, a),(c, c)\}$ Find 0
i)
ii) of
iii) $)^{\circ} \mathrm{fof}^{-1}$

Q5) a) Solve the congruence $8 x=13 \bmod 29$
b) For each pair of integer a and b, find integers q and r such that $\mathrm{a}=\mathrm{bq}+\mathrm{r}$ such that $0<=\mathrm{r}<\mathrm{b}$, where a is dividend, b is divisor, q is quotient and r is remainder.
i) $\mathrm{a}=-381$ and $\mathrm{b}=14$
ii) $a=-433$ and $b=-17$
c) Find all positive divisors of
i) $256=28$
ii) $392=23.72$

OR

Q6) a) Which of the following congruence is true? Justify the answer.
i) $446 \equiv 278(\bmod 7)$
ii) $793 \equiv 682$ (mod9)
iii) $445 \equiv 536(\bmod 18)$
b) Compute GCD of the following using Euclidian algorithm.
i) $\operatorname{GCD}(2071,206)$
ii) GCD $(1276,244)$
c) Using Chinese Remainder Theorem, find the valoe of P using following data.
$\mathrm{p}=2 \bmod 3$
$\mathrm{p}=2 \bmod 5$
$\mathrm{p}=3 \bmod 7$

Q7) a) Let $\mathrm{R}=\{0 \mathrm{o}, 45 \mathrm{o}, 90 \mathrm{o}, 135 \mathrm{o}, 180 \mathrm{o}, 2250,270 \mathrm{o}, 315 \mathrm{o}\}$ and $*=$ binary operation, so that $\mathrm{a} * \mathrm{~b}$ is overallangular rotation corresponding to successive rotations by a and then by b. Show that ($\mathrm{R},{ }^{*}$) is a Group.
b) Let l be the set of all integers.For each of the following determine whether *is an commutative operation or not:
i) $\quad a * b=\max (a, b)$
ii) $a * b=\min (a+2, b)$
iii) $a * b=2 a-2 b$
iv) $a * b=m$ in $(2 a-b, 2 b-a)$
v) $a * b=\operatorname{LCM}(a, b)$
vi) $a * b=a / b$
vii) $\mathrm{a} * \mathrm{~b}=$ power (a, b)
viii) $a * b=a 2+2 b+a b$

OR
Q8) a) Show that set G of all numbers of the form $a+b-12, a, b \in l$ forms a group under the operation addition i.e. $(a+b \sqrt{ } 2)+(c+\sqrt{ } d 2)=(a+c)+$ (bi+d) $\sqrt{ } 2$.
b) Determine whether the set together with the binary operation is a semigroup, group a monoid, orneither.
$S=\{1,2,5,10,20\}$, where $a^{*} \mathrm{~b}$ is defined as GCD (a, b)

