Total No. of Questions: 8]

PA-1242

SEAT No. :

[Total No. of Pages : 4

[5925]-265 S.E. (TT) **DISCRETE MATHEMATICS** (2019 Pattern) (Semester-III) (214441)

Time : 2¹/₂ Hours] Instructions to the candidates: [Max. Marks : 70

[6]

- Answer Q.1, or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8. *1*)
- 2) Figures to the right indicate full marks.
- Find the Shortest Path algorithm using Dijikstra's Shortest path algorithm. *Q1*) a)

3 4 2 3

- Construct an optimal tree for the weights 3, 4, 5, 6, 12 Find the weight b) of the optimal tree.
- Find the maximum flow for the following transport network. c)

OR

- Define Following with examples: *Q2*) a)
 - i) rooted tree
 - ii) Spanning tree
 - **Binary Tree** iii)

Use nearest Neighbourhood method to solve Travelling Salesman b) problem. [6]

[5925]-265

2

- Q4) a) What is the reflexive closure of the relation $R = \{(a, b) | a < b\}$ on the set of integers and symmetric closure of the relation $R = \{(a,b) | a > b\}$ on the set of positive integers? [6]
 - b) Determine whether the relations for the directed graphs shown in Figure are reflexive, symmetric, antisymmetric, and/or transitive. [6]

- c) Let $X = \{a, b, c\}$. Define $f: X \rightarrow X$ such that $f = \{(a,b), (b, a), (c, c)\}$ [5] Find i) f^{-1} ii) f^{-1} of iii) $f \circ f^{-1}$
- Q5) a) Solve the congruence $8x = 13 \mod 29$
 - b) For each pair of integer a and b, find integers q and r such that a = bq + r such that $0 \le r \le b$, where a is dividend, b is divisor, q is quotient and r is remainder. [8]

[6]

- i) a = -381 and b = 14
- ii) a = -433 and b = -13
- c) Find all positive divisors of
 - i) 256 = 28
 - ii) 392 = 23.72

OR

- Q6) a) Which of the following congruence is true? Justify the answer. [6]
 - i) $446 \equiv 278 \pmod{7}$
 - ii) $793 \equiv 682 \pmod{9}$
 - iii) $445 \equiv 536 \pmod{18}$
 - b) Compute GCD of the following using Euclidian algorithm. [6]
 - i) GCD (2071, 206)
 - ii) GCD (1276, 244)
 - c) Using Chinese Remainder Theorem, find the value of P using following data. [6]
 - $p=2 \mod 3$
 - $p=2 \mod 5$
 - $p=3 \mod 7$

3

- **Q7**) a) Let $R = \{00, 450, 900, 1350, 1800, 2250, 2700, 3150\}$ and *= binary operation, so that a*b is overall angular rotation corresponding to successive rotations by a and then by b. Show that (R,*) is a Group.
 - Let l be the set of all integers. For each of the following determine whether **b**) *is an commutative operation or not: [8]

[9]

- a*b=max(ab)i) ii) a*b=min(a+2,b)a*b=2a-2biii) a*b=min(2a-b, 2b-a)iv) a*b=LCM(a,b)V) vi) a*b–a/b a*b=power (a,b) vii viii) a*b=a 2 + 2b+ab
- Show that set G of all numbers of the form $a+b \vee 2$, a, b $\in 1$ forms a **Q8**) a) group under the operation addition i.e. $(a+b\sqrt{2}) + (c+\sqrt{d} 2) = (a+c) + (a+$ (b+d) $\sqrt{2}$. [9]

2.10.20

OR

- b) Determine whether the set together with the binary operation is a semigroup, group a monoid, or neither. [8]
 - $S = \{1, 2, 5, 10, 20\}$, where a*b is defined as GCD (a,b)