Total 1	No.	of	Questions	:	4]
---------	-----	----	-----------	---	----

SEAT No. :

[Total No. of Pages: 2

PD1

[6408]-101

F.E. (Insem)

ENGINEERING MATHEMATICS-II

(2019 Pattern) (Credit System) (Semester-II) (107008)

Time: 1 Hour]

[Max. Marks: 30

Instructions to the candidates:

- 1) Attempt Q.1 or Q.2 Q.3 or Q.4.
- 2) Near diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables slide rule, mollier charts, electronic pocket calculator and steam table is allowed.
- 5) Assume suitable data if necessary.

Q1) a) Solve
$$\frac{dy}{dx} = \frac{1 + y^2 + 3x^2y}{1 - 2xy - x^3}$$
 [5]

b) Solve
$$(3xy^2 - y^3)dx + (xy^2 - 2x^2y)dy = 0$$
 [5]

c) Solve
$$\sec x \tan y \frac{dy}{dx} + \tan x \sec y = \cos^2 x$$
 [5]

OR

Q2) a) Solve
$$\frac{dy}{dx} + \frac{2x}{1+x^2} y = \frac{3x^2}{1+x^2}$$

[5]

b) Solve
$$\frac{dy}{dx} - xy = -y^3 e^{-x^2}$$

[5]

c) Solve
$$(x^4e^x - 2mxy^2)dx + 2mx^2y dy = 0$$

[5]

Q3) a) A body is heated to 100°C & placed in a room whose temperature is 20°C and cools to 60°C in 5 minutes. How much time is required for it to cool to 40°C?

P.T.O.

- A resistance of 150 ohms, an inductance of 0.5 henry are connected in a b) series with a battery of 30 volts. Find the current in the circuit as a function of *t*. [5]
- A particle of unit mass moves in a horizontal straight line OA with an c) acceleration $\frac{k'}{r^3}$ at a distance 'x' and directed towards 'o'. If initially the particle was at rest at a distance 'a' from o, show that it will be at a from 's' at the end of time $\frac{a^2}{2}\sqrt{\frac{3}{k}}$. [5]

- Find the orthogonal trajectories of the family of curves $r^2 = a \cos 2\theta$. [5] **Q4)** a)
 - A capacitor c = 0.01 farad in a series with a resistor R = 20 ohms is b) charged from a battery E = 10 volts. Assuming that initially the capacitor is completely uncharged, determine the charge Q(t) and current I(t) in the circuit. [5]
 - c) A pipe 10cm in a diameter contains steam at 200°C. It is protected with a covering 5cm thick for which k=0.12. If the temperature of outer surface of the covering is 50°C. How much heat is lost per minute from a portion of the pipe 20 metres long?