| Tota                                        | l No.                                                                    | of Qu                                                         | estions: 11]             |               | SEAT No.:         |                  |  |  |  |  |
|---------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------|---------------|-------------------|------------------|--|--|--|--|
| PD                                          | -403                                                                     | 5                                                             |                          |               | [Total]           | No. of Pages : 4 |  |  |  |  |
|                                             |                                                                          |                                                               | [64                      | 401]-2402     |                   |                  |  |  |  |  |
|                                             |                                                                          |                                                               |                          | F.E.          |                   |                  |  |  |  |  |
| BSC-102-BES: ENGINEERING PHYSICS            |                                                                          |                                                               |                          |               |                   |                  |  |  |  |  |
| (2024 Pattern) (Semester - I/II)            |                                                                          |                                                               |                          |               |                   |                  |  |  |  |  |
|                                             |                                                                          |                                                               |                          |               |                   | $\sim$           |  |  |  |  |
| Time                                        | $2:2\frac{1}{2}$                                                         | Hou                                                           | rs]                      |               | [M                | ax. Marks: 70    |  |  |  |  |
| Insti                                       | uctio                                                                    | ns to                                                         | the candidates:          |               |                   |                  |  |  |  |  |
|                                             | <i>1)</i>                                                                | <b>Q</b> .1                                                   | is compulsory.           |               | 47                |                  |  |  |  |  |
|                                             | 2) Attempt Q.2 or Q.3, Q.4 or Q.5, Q.6 or Q.7, Q.8 or Q.9, and Q.10 or Q |                                                               |                          |               |                   |                  |  |  |  |  |
|                                             | 3)                                                                       |                                                               | t diagrams must be dra   |               | er necessary.     |                  |  |  |  |  |
|                                             | <i>4)</i>                                                                | Assu                                                          | ıme suitable data, if ne | ecessary.     |                   |                  |  |  |  |  |
|                                             | Physical Constants:                                                      |                                                               |                          |               |                   |                  |  |  |  |  |
|                                             | •                                                                        | Mass of electron $m_e = 9.1 \times 10^{-31} \text{kg}$        |                          |               |                   |                  |  |  |  |  |
|                                             | •                                                                        | Charge on electron, $e = 1.6 \times 10^{-19} \text{ C}$       |                          |               |                   |                  |  |  |  |  |
|                                             | •                                                                        | Planck's constant, $h = 6.63 \times 10^{-34} \text{ J-sec}$   |                          |               |                   |                  |  |  |  |  |
|                                             |                                                                          |                                                               |                          |               |                   |                  |  |  |  |  |
| <b>Q</b> 1)                                 | Choose the correct answer and rewrite it. [10]                           |                                                               |                          |               |                   |                  |  |  |  |  |
| i) Carbon dioxide laser emits wavelength in |                                                                          |                                                               |                          | n in          |                   |                  |  |  |  |  |
|                                             |                                                                          | a)                                                            | Visible region           | b)            | Ultraviolet regio | on               |  |  |  |  |
|                                             |                                                                          | c)                                                            | Infrared region          | d)            | None of the Abo   | ove              |  |  |  |  |
|                                             | ii)                                                                      | ii) In optical fiber, acceptance cone is the acceptance angle |                          |               |                   |                  |  |  |  |  |
|                                             |                                                                          | a)                                                            | Equal                    | b)            | Double            |                  |  |  |  |  |
|                                             | 4                                                                        | c)                                                            | Half                     | d)            | One Third         |                  |  |  |  |  |
|                                             | iii)                                                                     | The                                                           | mater waves are          | _             |                   |                  |  |  |  |  |
|                                             |                                                                          | a)                                                            | Electromagnetic way      | ves           |                   |                  |  |  |  |  |
|                                             |                                                                          | b)                                                            | Mechanical Waves         |               |                   |                  |  |  |  |  |
|                                             |                                                                          | c)                                                            | ultrasonic waves         |               |                   |                  |  |  |  |  |
|                                             |                                                                          | d)                                                            | Neither Electromagn      | etic nor Mecl | hanical Waves     |                  |  |  |  |  |

| iv)   | Wave function $\Psi$ of a particle is                                                                              |                         |    |                         |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------|-------------------------|----|-------------------------|--|--|--|--|
|       | a)                                                                                                                 | a real quantity         | b) | a complex quantity      |  |  |  |  |
|       | c)                                                                                                                 | an imaginary quantity   | d) | none of these           |  |  |  |  |
| v)    | The points of constructive interference of light are,                                                              |                         |    |                         |  |  |  |  |
|       | a)                                                                                                                 | Always bright           | b) | May be bright or dark   |  |  |  |  |
|       | c)                                                                                                                 | Always dark             | d) | Neither bright nor dark |  |  |  |  |
| vi)   | The Plane-polarized light, vibrations of particles in medium are direction to direction propagation of light.      |                         |    |                         |  |  |  |  |
|       | a)                                                                                                                 | Parallel                | b) | perpendicular           |  |  |  |  |
|       | c)                                                                                                                 | Antiparallel            | d) | None                    |  |  |  |  |
| vii)  | ) The energy band gap size for semiconductors is in the range eV.                                                  |                         |    |                         |  |  |  |  |
|       | a)                                                                                                                 | 1-2                     | b) | 2-3                     |  |  |  |  |
|       | c)                                                                                                                 | 3-4                     | d) | > 4                     |  |  |  |  |
| viii) | i) The Frequency range for ultrasonic is                                                                           |                         |    |                         |  |  |  |  |
|       | a)                                                                                                                 | less than 20Hz          | b) | 20 Hz to 20 KHz         |  |  |  |  |
|       | c)                                                                                                                 | Greater Than 20 KHz     | d) | None of the above       |  |  |  |  |
| ix)   | The minimum magnetic field required to destroy superconductivity                                                   |                         |    |                         |  |  |  |  |
|       | called                                                                                                             |                         |    |                         |  |  |  |  |
|       | a)                                                                                                                 | Critical magnetic field | b) | Applied magnetic field  |  |  |  |  |
|       | c)                                                                                                                 | External magnetic field | d) | None                    |  |  |  |  |
| x)    | Nanotechnology studies for the size of particles                                                                   |                         |    |                         |  |  |  |  |
|       | a)                                                                                                                 | 100-1000 nm             | b) | more than 100 nm        |  |  |  |  |
|       | c)                                                                                                                 | 1-100 nm                | d) | None                    |  |  |  |  |
|       |                                                                                                                    |                         |    |                         |  |  |  |  |
| a)    | With the help of an energy level diagram, explain the construction and working of CO <sub>2</sub> laser. [6]       |                         |    |                         |  |  |  |  |
|       |                                                                                                                    |                         |    |                         |  |  |  |  |
| b)    | Differentiate between step index and graded index fibers. (Any three points) [3]                                   |                         |    |                         |  |  |  |  |
| c)    | Calculate the numerical aperture and acceptance angle of an optical fiber having $n_1 = 1.48$ and $n_2 = 1.45$ [3] |                         |    |                         |  |  |  |  |
|       | $\cap \mathbb{P}$                                                                                                  |                         |    |                         |  |  |  |  |

- Q3) a) What is attenuation in optical fibers? Discuss in brief the various internal and external factors responsible for attenuation. [6]
  b) State characteristics of a laser. Explain any one of them in brief. [3]
  - c) What is stimulated emission? Explain its significance in the production of lasers. [3]
- Q4) a) Starting from de Broglie equation, derive Schrodinger's Time Independent wave equation.[6]
  - b) State de Broglie hypothesis. Derive the equation of de Broglie wavelength by analogy with radiation. [3]
  - c) Lowest energy of an electron trapped in potential well is 38 eV. Calculate the width of well. [3]

OR

- **Q5**) a) For a particle trapped in a one-dimensional rigid box, derive the equation for its energy. [6]
  - b) Differentiate between classical and quantum computing (any three).[3]
  - c) Compute the wavelength of the De Broglie waves associated with a proton moving at 5% of the velocity of light. Proton has 1856 times the mass of one electron. (Given:  $m_e = 9.1 \times 10^{-31} \text{kg}$ ,  $c = 3 \times 10^8 \text{m/s}$ ). [3]

Q6) a) Explain interference in thin parallel film in the reflected system with a neat & labelled diagram. Calculate the total path difference. Obtain the condition of maximum and minimum.[6]

- b) Differentiate between positive and negative crystal. [3]
- c) Obtain the intensity of light transmitted by the analyzer if the angle between the polarizer and analyzer is 45°. [3]

OR

- Q7) a) What is double refraction? Explain Huygens' theory of double refraction. [6]
  - b) Explain the application of interference as an antireflection coating.[3]
  - c) The wedge-shaped film with a refractive index of 1.5, is illuminated by the light of wavelength 5890A°, If the angle of the wedge is 30 seconds, Calculate the fringe width. [3]

- Q8) a) With the help of a neat, labelled diagram, explain the Hall effect. Derive the equation of Hall voltage and Hall coefficient.[6]
  - b) What are ultrasonic waves? State characteristics of ultrasonic wave. (any four) [3]
  - c) An ultrasonic pulse is sent through a steel block, an echo is recorded after 1.512 microseconds, calculate the thickness of steel block if the velocity of ultrasonic waves is 5900 rn/s. [3]

OR

- **Q9**) a) What is an echo sounding technique? Using this technique explain the method for flaw detection using ultrasonic waves. [6]
  - b) Define Fermi level for metal. Write the formula for Fermi-Dirac distribution function and explain terms involved in it. [3]
  - c) In a semiconductor with a Hall coefficient of 145 cm<sup>3</sup>/C having a width of 2 cm and a thickness 0.2 cm with a magnetic field induction of 2T along the smaller dimension with a current of 150 mA. Calculate hall voltage. [3]
- Q10)a) Explain the process of manufacturing nanoparticles using Physical Vapor Deposition. State advantages and limitations of this method. [6]
  - b) What is Critical magnetic field? Write its equation and explain the terms involved in it. A superconductor has a critical temperature of 3.7 K. At 0 k the critical magnetic field is 0.0306 Tesla. What is the critical magnetic field at temperature 2 K. [6]

OR

- Q11)a) Explain the Meissner effect. What is the cause of the Meissner effect? Show that superconductors exhibit perfect diamagnetism. [6]
  - b) Explain electrical and optical properties of nanoparticles. [6]

