Total No. of Questions: 11]

SEAT No.:

PD-5274

[Total No. of Pages : 4

[6401]-2409 F.E.

BSC-151-BES: ENGINEERING MATHEMATICS - II (2024 Pattern) (Semester - II)

Time : 2½ *Hours*]

[Max. Marks : 70]

Instructions to the candidates:

- 1) Q.1 is compulsory. Q.2 or Q.3, Q.4 or Q.5, Q.6 or Q.7, Q.8 or Q.9, Q.10 or Q.11.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of electronic pocket calculator is allowed.
- 5) Assume suitable data, if necessary.

Q1) Write the correct option.

a) The value of
$$\int_{0}^{\pi/2} \sin^4 x \, dx$$
 is

[2]

i)
$$\frac{\pi}{2}$$

ii)
$$\frac{3\pi}{8}$$

iii)
$$\frac{3\pi}{16}$$

iv)
$$\frac{\pi}{4}$$

b) First loop of the curve $r = a\sin 3\theta$ is along

[2]

i)
$$\theta = \frac{\pi}{4}$$

ii)
$$\theta = 0$$

iii)
$$\theta = \frac{\pi}{2}$$

iv)
$$\theta = \frac{\pi}{6}$$

[2]	y = x is	x^2 and	a bounded by the curves $y =$	Are	c)
	$\frac{1}{2}$	ii)	$\frac{1}{6}$	i)	
	$\frac{1}{12}$	iv)	$\frac{1}{3}$	iii)	
$\frac{dy}{dx} - \frac{y}{x} = \frac{-1}{x^2} \text{ is}[2]$	al equation	ferenti	grating factor of the linear di) Inte	d)
5.	$\frac{1}{x}$	ii)	$\log x$	i)	
	x	iv)	$-\frac{1}{x}$	iii)	
Maximum current i _{max} of R-L circuit is [1					e)
	$\frac{R}{E}$	ii)	$\frac{E}{R}$	i)	
	$\frac{-E}{R}$	iv)	ER	iii)	
f) The orthogonal trajectory of a family of curve that intersect each curve of the family at angle [1]					
	$\theta = 180^{\circ}$	ii)	$\theta = 0^{\circ}$	í)	
	$\theta = 60^{\circ}$	iv)	$\theta = 90^{\circ}$	iii)	
			10°		
[4]			luate $\int_{0}^{1} \frac{x^8}{\sqrt{1-x^2}} dx$	Eva	Q2) a)
[4]			$\text{luate } \int_{0}^{\infty} x^{7} e^{-2x^{2}} dx$) Eva	b)
[4]		$a \ge 0$	we that $\int_{0}^{1} \frac{x^{a} - 1}{\log x} dx = \log(1 + a)$	Prov	c)

OR

Q3) a) Evaluate
$$\int_{0}^{\infty} \frac{x^2}{(1+x^2)^{7/2}} dx$$
 [4]

b) Evaluate
$$\int_{0}^{1} x^{3} (1-x)^{5} dx$$
 [4]

c) Prove that
$$\int_{0}^{\infty} \frac{e^{-x} - e^{-ax}}{x \sec x} dx = \frac{1}{2} \log \left(\frac{a^2 + 1}{2} \right), a > 0$$
 [4]

Q4) a) Trace the curve
$$xy^2 = a^2(a-x)$$
 [4]

b) Trace the curve
$$r = a(1 + \cos \theta)$$
 [4]

c) Find the equation of sphere passing through the circle $x^2 + y^2 + z^2 = 4$, z = 0 meeting the plane x + 2y + 2z = 0 in a circle of radius 3. [4]

OR

Q5) a) Trace the curve
$$r = a\sin 2\theta$$
 [4]

- b) Find the equation of the cone with vertex at (1, 2, -3), semi-vertical angle $\cos^{-1} \frac{1}{\sqrt{3}}$ and the line $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+1}{-1}$ as axis of the cone. [4]
- c) Find the equation of right circular cylinder of radius 2 whose axis is given by $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-4}{6}$ [4]
- **Q6)** a) Change the order of integration

$$\int_0^5 \int_{2-x}^{2+x} f(x,y) \, dx \, dy \tag{6}$$

b) Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the plane y + z = 4 and z = 0 [6]

OR

- **Q7)** a) Find the area of one loop of the curve $r = a \cos 2\theta$ [6]
 - b) Find the centre of gravity of the area bounded by $y^2 = x$ and x + y = 2.[6]

Q8) a) Solve $(2x - y) dx = (x - y) dy$	[4]
--	-----

b) Solve
$$(x - y^2) dx + 2xy dy = 0$$
 [4]

c) Solve
$$\frac{dy}{dx} = y \tan x - y^2 \sec x$$
 [4]

OR

Q9) a) Solve
$$x^2ydx - (x^3 + y^3)dy = 0$$
 [4]

b) Solve
$$x \frac{dy}{dx} + y = x^3 y^6$$

c) Solve
$$e^{y} \frac{dy}{dx} + e^{x+y} = e^{2x}$$
 [4]

- Q10)a) A body originally at 80°C cools to 60°C in 20 minutes and the temperature of air being 40°C. What will be the temperature of the body after 40 minutes [4]
 - b) A body of mass m falling from rest is subjected to the force of gravity and an air resistance proportional to the square of the velocity (KV^2) . If it falls through a distance 'x' and possesses a velocity 'v' at that instant,

prove that
$$\frac{2kx}{m} = \log\left(\frac{a^2}{a^2 - v^2}\right)$$
 where $mg = ka^2$ [4]

c) A resistance of 100Ω , an inductance of 0.5 henry are connected in series with a battery of 20 volts. Find the current in a circuit as a function of t.

 $\cap R$

- Q11)a) A circuit consistant of resistance 'R' ohm and a condensor of 'c' farads connected to a constant e.m.f. If $\frac{q}{c}$ is the voltage of the condensor at time 't' after closing the circuit. Show that the voltage at time t is $E(1 e^{-t/Rc})$.
 - b) A bullet is fired into a sand tank. It's retardation is proportional to square root of it's velocity. Show that the bullet will come to rest in time $\frac{2\sqrt{V}}{K}$ where V is initial velocity. [4]
 - A pipe 10 cm in diameter contains a steam at 100° C. It is covered with asbestos 5 cm thick for which K = 0.006 and the outside temperature is at 30° C. Find the amount of heat lost per hour from a meter long pipe. [4]

888