

Time : 1 Hour]

[Max. Marks : 30

Instructions to the candidates:

1) Answer Q. 1 or Q. 2, Q. 3 or Q. 4.
2) Figures to the right indicate full marks.
3) Assume suitable data, if necessary.
4) Use of electronic pocket calculator is allowed in the examination.
5) Use of cell phone is prohibited in the examination hall.

Q1) A) Resultant force $\mathrm{R}=5000 \mathrm{~N}$ hastwo component forces ' P ' $=3600 \mathrm{~N}$ and ' Q ' $=1500 \mathrm{~N}$ as shown in Fig 1A. Determine direction of component forces ' P ' and ' Q ' w. r. to resultant force ' R '.

Fig. 1A
B) Force ' P ' is acting on the plate which is divided in to squares of 0.1 m as shown in Fig. 1B. The moment of force ' P ' about point ' A ' is 30 Nm clockwise. Determine the magnitude of force ' R '.

Fig. 1B
C) State and explain "Law of Parallelogram" of forces with sketch. [2+3]

OR
Q2) A) Determine magnitude of the resultant for the force system as shown in Fig. 2A, w.r. to ' B '. Also determine the horizontal distance from point ' B ', where the resultant cuts the line $A B C$. Comment on whether it cuts on right hand side or left hand side of point ' B '.
[6+2+2]

Fig. 2A
B) What is Couple? Give any hree characteristics of couple with sketch.

Q3) A) Define centroid and center of gravity. Analyze and locate the position of centroid for the plane lanina as shown in Fig. 3A, w.r.to 'A'.

Fig. 3A
B) The uniform ladder AB has a length of 6 m and a mass of 16 kg resting at 54° with horizontal floor. End A of fadder is resting on rough horizontal floor and end B rests against a smeoth vertical wall as shown in Fig. 3B. A man of mass 65 kg has to clị̂ this ladder. At what position from the base will he induce slipping? Take coefficient of static friction $\mu_{\mathrm{s}_{\mathrm{w}}} 0.34$ between horizontal floor and ladder.

Fig. 3 B

Q4) A) Analyze and locate the position of centroid for the plane lamina as shown in Fig. 4A, w.r. to 'O' Also determine the moment of inertia of the shaded portion with respect te y-y axis (vertical) passing through the centroid.

Fig. 4A
B) A block of 20kg hanging through a inextensible cable and kept in rest by applying a force of magnitude ' $\mathrm{F}=1.5 \mathrm{~kg}$ ' on other side of the cable, which is passing through the rough pulley as shown in the Fig. 4B. Determine (i) the lap angle between cable and pulley required to keep the block in rest; (ii) the number of turns required to wound the cable on pulley. Take coefficient of static friction $\mu_{\mathrm{s}}=0.30$ between pulley and cable.

Fig. 48

