Time : 1 Hour]

Instructions to the candidates:

1) Solve Q1 or Q2 and Q3 or Q4.
2) Figures to the right indicate full marks.
3) Neat diagrams must be drawn wherever necessary.
4) Assumé suitable data, if necessary.
5) Use of non-programmable calculator is allowed.

Q1) a) Derive an expression for Energystored per unit volume in the magnetic field.
b) Two coils having turns 1000 and 1500 are placed on common magnetic circuit. A current of 5 A in coil-1 produces a flux of 0.2 mWb and 80% of this flux links to coil-2. Find
i) Self Inductance of coil-1
ii) Mutual Inductance between them
iii) If this currentinfirst coil is interrupted in 0.01 sec find emfinduced in coil-1 and coil-2

OR
Q2) a) Obtain an expression for coefficient of coupling between two magnetically coupled coils.
b) i) Derive the expression for flux, for iron ring wound with N turns \& current is passed through it.
ii) Define the reluctance \& state the facters on which it depends.

Q3) a) Define the RMS value of current and obtain the expression for RMS value of sinusoidally varying alternating current in terms of its peak value.
b) An air capacitor has two parahel plates of $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ and plates are separated by 1 cm . Find
i) Capacitance
ii) Potential difference, when charge of $500 \mu \mathrm{C}$ is applied.
iii) If aiiis replaced by dielectric material having relative permittivity $\varepsilon r=4$, find new value of capacitance \& potential difference when same charge is applied.

Q4) a) Explain the concept of phase lag \& phase lead by using :
i) 80 mathematical equations
ii) waveform and
iii) phasor diagram.
b) A sinusoidally varying altenating Voltage of 100 V (rms value) with 50 Hz frequency is applied to a citcuit find :
i) The mathematica equation of the voltage;
ii) Time Period
iii) The instantaneous voltage when $\mathrm{t}=1.667 \mathrm{~ms}$;
iv) The time whem instantaneous voltage is 100 V ;
v) Average vatue of the voltage
vi) Maximum value of the voltage.

\&み\&

