Total No. of Questions : 4]	90	SEAT No. :
P-5371		[Total No. of Pages : 2

[6185]-54

F.E. (All Branches) (Insem.) BASIC ELECTRICAL ENGINEERING

(2019 Pattern) (Semester - I) (103004)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Solve Q1 or Q2 and Q3 or Q4.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable data, if necessary.
- 5) Use of non-programmable calculator is allowed.
- Q1) a) Derive an expression for Energy stored per unit volume in the magnetic field. [7]
 - b) Two coils having turns 1000 and 1500 are placed on common magnetic circuit. A current of 5A in coil-1 produces a flux of 0.2 mWb and 80% of this flux links to coil-2. Find [8]
 - i) Self Inductance of coil-1
 - ii) Mutual Inductance between them
 - iii) If this current in first coil is interrupted in 0.01 sec find emf induced in coil-1 and coil-2

OR

- Q2) a) Obtain an expression for coefficient of coupling between two magnetically coupled coils. [7]
 - b) i) Derive the expression for flux, for iron ring wound with N turns & current is passed through it.
 - ii) Define the reluctance & state the factors on which it depends.

[8]

Q3) a)	Define the RMS value of current and obtain the expression for RMS value of sinusoidally varying alternating current in terms of its peak value. [7]		
b)	An air capacitor has two parallel plates of $10 \text{ cm} \times 10 \text{ cm}$ and plates are separated by 1 cm. Find [8]		
	i) Capacitance		
	ii) Potential difference, when charge of 500 μC is applied.		
	iii) If an is replaced by dielectric material having relative permittivity $\varepsilon r = 4$, find new value of capacitance & potential difference when same charge is applied.		
	OR		
Q4) a)	Explain the concept of phase lag & phase lead by using: [7]		
	i) mathematical equations		
	(ii) waveform and		
	iii) phasor diagram.		
b)	A sinusoidally varying alternating voltage of 100 V (rms value) with 50 Hz frequency is applied to a circuit find: [8]		
	i) The mathematical equation of the voltage;		
	ii) Time Period		
	iii) The instantaneous voltage when $t = 1.667$ ms;		
	iv) The time when instantaneous voltage is 100 V;		
	v) Average value of the voltage		
	vi) Maximum value of the voltage.		
	So, Vo		
1	HHH CO		
\sim	C 200		
\mathcal{N}	6.7		
5	iii) Time Period iii) The instantaneous voltage when t = 1.667 ms; iv) The time when instantaneous voltage is 100 V; v) Average varue of the voltage vi) Maximum value of the voltage.		
[6195] 5/	2		
[6185]-54	t Z V		