\square

[6178] - 2
 ENGINEERING PHYSICS
 (2019 Patterni) (Semester - I/II) (107002)

Time : 2½ Hours]
[Max. Marks : 70

Instructions to the candidates:

1) Q. 01 is compulsory, Answer Q2 or Q3, Q4 or Q5, Q6 or Q7, Q8 or Q9.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicates full marks.
4) Use of Electronic pocket calculator is allowed.
5) Assume suitable data, if necessary.

Physical Constants : -

- Plank's constant $h=6.63 \times 10^{-34} \mathrm{~J} .5 \mathrm{~S}$
- Mass of electron $m_{e}=9.1 \times 10^{-31} \mathrm{Kg}$
- Charge on election $e=1.6 \times 10^{19} \mathrm{C}$

Q1) Write the correct option with answer for the following (1 mark each). [10]
i) The de Broglie wavelehgth is \qquad proportional to mass of the particle and \qquad proportional to velocity of the particle
a) Directly, directly
b) Inversely, inversely,
c) Directly, inversely
d) Inversely, directly
ii) If a wave functio@is finite, single valued, continuousandnormalizable it is called as
a) Well behaved function
b) Probability function,
c) Fermi function
d) None of these
iii) Heisenberg Uncertainty Principle is the product of \qquad in position and momentum
a) Difference
b) Uncertainties
c) Addition
d) Subtraction
iv) In Hall effect, when a specimen caring current I is placed in transverse magnetic field B then electric field developed in specimen is
\qquad to I and B
a) parallel
b) intersect
c) perpendicular
d) none of above
v) The resistivity has unit \qquad
a) $O \mathrm{Ohm}-\mathrm{m}$
b) Ohm
c) $0 h m / \mathrm{m}$
d) $\mathrm{Ohm} / \mathrm{cm}$
vi) Superconductivity is characterized by a state of
a) Finite resistivity
b) Infinite resistivity
c) Zero resistivity
d) Zero conductivity
vii) Superconductor is a perfect \qquad material.
a) Insuilator
b) Semicondúctor
c) Bielectric
d) Diamagnetic
viii) \qquad materials are weakly attracted when placed in the external > magnetic field
a) Paramagnetic material
b) Diamagnetic material
c) Ferromagnetic materials
d) Ferrimagnetic materials
ix) A nanoparticle has dimensions in the range
a) 10 to 100 micrometres
b) 1 to 100 nanometres,
c) 1 to 10 nanométres
d) Greater than 100 nm
x)
the material
a) Destructive testing
b) Both destructive and non-destructive testing
c) None in destructive and non-destructive testing
d) Non-destructive testing

Q2) a) Derive Schrodinger's time Independent wave equation.
b) State and explain Heisenberg's uncertainty principle.
c) Calculate the energy difference between the ground state and first excited state of an electron in the rigid box of length $1 \mathrm{~A}^{\circ}$.

Q3) a) Derive the equation for energy of the particle is enclosed in a onedimensional rigid box (infinite potential well).
b) State de Broglie hypothesis. Derive the equation of de Broglie wavelength for an electron accelerated by a potential difference "V".
c) An electron has a speed of $600 \mathrm{~m} / \mathrm{s}$ with an accuracy of 0.005%. Find the uncertainty in Its, 4 position.

Q4) a) Explain classification of solids on the basis of Band Theory.
b) Explain the working of PN junction diode in (a) forward bias (c) reverse bias on the basis of energy level diagram.
c) Calculate the mobility of charge carriers in doped silicon whose conduetivity is 100 per $\Omega-\mathrm{m}$ and the Hall coefficient $9 \mathrm{~s} 3.6 \times 10^{-4} \mathrm{~m}^{3} /$ coulomb?

OR
Q5) a) Explain Hall effect. Derive the equation of Hall coefficient.
b) Prove that in intrinsic semiconductor fermi Tevel lies exactly at centre detween valence band and conduction band.
c) Calculate the conductivity of pure silicon at room temperature when concentration of carriers is $1.6 \times 10{ }^{10}$ per cc $\left[\mu_{\mathrm{e}}=1500 \mathrm{~cm}^{2} / \mathrm{V}\right.$-sec, $\mu_{\mathrm{h}}=500 \mathrm{~cm}^{2} / \mathrm{V}$-sec.

Q6) a) Differentiate between type I and type II superconductors.
b) Define the terms:
i) Magnetic field strength(H)
ii) Magnetization (M)
iii) Magnetic Susceptibility (χ)
iv) Magnetic Induction (B)
v) Relative Petmeability (μ)
c) Explain DC and AC Josephson effect in brief.

Q7) a) Explain how the information is recorded and Perrievedin magneto-optical recording devices.
b) State and Explain Meissner effect. Show that superconductors exhibit perfect diamagnetism.
c) Differentiate ferromagnetic materials and paramagnetic material. (Any two points)

Q8) a) Explain Electrical and Mechanical properties of nanoparticles.
b) Differentiate between Non-Destructive Testing techniques and destructive testing techniques.
c) Explain the applications of Nano particles in Targeted Drug Dilivery.

Q9) a) What is Non Destuctive? Testing? Explain Ultrasonic Testing Technique for flaw detection.
b) Explain namo technology is used in, Automobile and electronics field.[5]
c) An ultrasenic pylse of frequency 130 kHz is sent through a block of steel. The echopulse is recorded after 1.695 microseconds. If the velocity of ultasonio in steel is $5900 \mathrm{~m} / \mathrm{s}$, calculate the thickness of the steel block andthe wavelength of the pulse.

