Total No. of Questions : 9]

P-9074

[6178]-9

Æ.Ě.

[Total No. of Pages : 4

ENGINEERING MATHEMATICS - II (2019 Pattern) (Semester - II) (107008)

Time : 2¹/₂ Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Question No. 1 is compulsory.
- 2) Solve Q. No. 2 or Q. No. 3, Q. No. 4 or Q. No. 5, Q. No. 6 or Q. No. 7, Q. No. 8 or Q. No. 9.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of electronic pocket calculator is allowed.
- 6) Assume suitable data, if necessary.

Q1) Write the correct option for the following multiple choice questions.

d) Radius r of a sphere
$$x^{2} + y^{2} + z^{2} - 2z - 4y + 2z - 3 = 0$$
 is [2]
i) $r = 9$ ii) $r = 2$
iii) $r = 4$ iv) $r = 3$
c) The total number of loops for the curve $r = a \sin 3\theta$ are [1]
i) 2 ii) 3
iii) 6 iv) 4
f) $\iint \rho P^{2} dx$ where p-density and p² is distance of particle from axis, represents [1]
i) Area ii) Mass
ii) Moment of Inertia iv) Volume
Q2) a) $\Pi^{r} u_{n} = \int_{0}^{\pi/4} \sin^{2n} x \, dx$ then prove that $d_{n} = \left[1 + \frac{1}{2n}\right] u_{n-1} - \frac{1}{n2^{n+1}}$. [5]
b) Prove that : $\beta(m, n) = \beta(m, n+1) + \beta(m+1, n)$ [5]
c) If $f(x) = \int_{0}^{\pi/4} (x - t)^{2} G(t) dt$ then prove that $\frac{d^{3}f}{dx^{3}} = 2G(x)$ [5]
OR
Q3) a) If $U_{n} = \int_{0}^{\pi/4} \tan^{n} \theta \, d\theta$, then prove that $n[U_{n+1} + U_{n-1}] = 1$ [5]
b) Evaluate : $\int_{0}^{2} 2^{\frac{n}{2} + \frac{1}{2}} dx$ [5]
c) Evaluate : $\int_{0}^{2} 2^{\frac{n}{2} + \frac{1}{2}} dx$ [5]
ii) $\frac{d}{dt} \left[erf_{n}(\sqrt{t}) \right]$ ii) $\frac{d}{dt} \left[erf_{n}(\sqrt{t}) \right]$

Q4) a) Trace the curve
$$y^2(2a - x) = x^3$$
, $a > 0$. [5]
b) Trace the curve $r = a(1 - \cos\theta)$ [5]
c) Find the arc length of cycloid $x = a(t + \sin t)$, $y = a(1 - \cos t)$ from one cusp to another cusp. [5]
Q5) a) Trace the curve $y^2 = a(a - x)$, $a > 0$ [5]
b) Trace the curve $y^2 = a(a - x)$, $a > 0$ [5]
c) Trace the curve $y^2 = a(a - x)$, $a > 0$ [5]
c) Trace the curve $y = a(a - x)$, $a > 0$ [5]
c) Trace the curve $y = a(a - x)$, $a > 0$ [5]
 $x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}}$ [5]
Q6) a) Show that the plane $2x + y + 2z = 6$ fouches the sphere $x^3 + y + 2z^2 - 6x - 6y - 6z + 18 = 0$. Also find the point of contact. [5]
b) Find the equation of right circular cone whose vertex is at origin, axis is the line $\frac{1}{1} = \frac{y}{1} = \frac{z}{1}$ and has a semi-vertical angle of 30° . [5]
c) Find the equation of right circular could us 4 and axis is the line $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$ [5]
Q7) a) If the sphere $x^2 + y^2 - z^2 + 2xx + 3\lambda y + 4\lambda z - 1 - 5\lambda = 0$ cuts the sphere $x^2 + y^2 + z^2 + 3x - 3y + 3z - 56 = 0$, orthogonally, then find the value of λ . [5]
b) Find the equation of right circular cone whose vertex is at origin, generator is the line $\frac{x}{1} = \frac{y}{2} = \frac{x}{3}$ and axis is the line $\frac{x}{-1} = \frac{y}{1} = \frac{z}{-1}$ [5]
Q8) a) Change order of integration and evaluate $b = \frac{x}{y} - dx dy$ [5]
b) Find the area of cardioide $r = a(1 + \cos\theta)$ using double integration. [5]
c) Find the area of cardioide $r = a(1 + \cos\theta)$ using double integration. [5]

[6178]-9

Prove that moment of inertia of the area included between curves $y^2 = 4ax$ c) and $x^2 = 4ay$ about x-axis is $\frac{144}{35}$ Ma², given that density $\rho = \frac{3M}{16a^2}$ and M is the mass. [5]

Change following double integration to its polar form and evaluate **Q9**) a) where R is annulus between $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$. $\iint_{R} \frac{1}{x}$ [5]

- Prove that the volume bounded by cylinders $y^2 = x$ and $x^2 = y$ and planes b) + y + z = 2 is $\frac{11}{30}$. [5]
- Find the x co-ordinate of centre of gravity of a loop of $r = a \sin 2\theta$ in c) $\frac{\pi a^2}{8}$ first quadrant, given that area of loop [5]

4

Anon and a statich