SEAT No. : \square
[Total No. of Pages : 4

Time : $2^{1 ⁄ 2} 2$ Hours]
[Max. Marks : 70

Instructions to the candidates:

1) Question No. I' is compulsory.
2) SolveQ. No, 2 or Q. No. 3, Q. No. 4 or Q. No. 5, Q. No. 6 orQ. No. 7, Q. No. 8 or Q. No. 9.
3) Neat diagrams must be drawn wherever necessary.
4) Figures to the right indicate full marks.
5) Use of electronic pocket calculator is allowed.
6) $\star_{\text {Assume suitable data, if necessary. }}$

Q1) Write the correct option for the followingnultiple choice questions.
a) $\int_{0}^{2 \pi} \sin ^{3} \theta \cos ^{4} \theta d \theta$
i) $\frac{2}{35}$
ii) $\frac{1}{15}$
iii) 0
iv) $\frac{2 \pi}{35}$
b) The equation of angents to the curve $3 a y^{2}=x(x-a)^{2}$, at the origin, if exist is
i) $x=a$
ii) $x=0, y=0$
iii) $x=0$
iv) $y=0$
c) $\int_{\theta=0}^{\pi / 2} \int_{r=0}^{2} r d r d \theta=$
i) π
ii) 1
iii) 2
d) Radius r of a sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ is
i) $r=9$
ii) $r=2$
iii) $r=4$
iv) $r=3$
e) The total number of loops tor the curve $r=a \sin 3 \theta$ are
i) 2
ii) 3
iii) 6
iv) 4
f) $\iint \rho \mathrm{P}^{2} d x d y$ where, ρ-density and p^{2} is distance of particle from axis, represents
i) A rea
ii) Mass
iii) Moment of Inertia
iv) Volume

Q2) a) of $u_{n}=\int_{0}^{\pi / 4} \sin ^{2 n} x d x$ then prove that $y_{n}=\left(\frac{1}{2} \frac{1}{2 n}\right) u_{n-1}-\frac{1}{n 2^{n+1}}$.
b) Prove that: $\beta(m, n)=\beta(m, n+19+\beta(m+1, n)$
c) If $f(x)=\int_{0}^{x}(x-t)^{2} G(t) d t$ then prove that $\frac{d^{3} f}{d x^{3}}=2 G(x)$

Q3) a) If $\mathrm{U}_{n}=\int_{0}^{\pi / 4} \tan ^{n} \theta d \theta$, then prove that $n\left[\mathrm{U}_{n+1}+\mathrm{U}_{n-1}\right]=1$
(b) Evaluate : $\int_{0}^{\infty} 2^{-9 x^{2}} d x$
c) Evaluate :
i) $\frac{d}{d t}[\operatorname{erf}(\sqrt{t})]$
ii) $\frac{d}{d t}[\operatorname{erf}(\sqrt{t})]$

Q4) a) Trace the curve $y^{2}(2 a-x)=x^{3}, a>0$
b) Trace the curve $r=a(1-\cos \theta)$
c) Find the arc length of cycloid det $^{2}=a(\mathrm{t}+\sin t), y=a(1-\cos t)$ from one cusp to another cusp.

Q5) a) Trace the curve $a)^{2}=a^{2}(a-x), a>0$
b) Trace the cufver $=a \cos 3 \theta$.
c) Trace the curve

Q6) a) Show that the plane $2 x+y+2 z=6$ touches the sphere $x^{2}+y^{2} 4^{0} z^{2}-6 x-6 y-6 z+18=0$. Also find the point of contact.
b) Find the equation of right circular cone whoseyentex is at origin, axis is athe line $\frac{x}{1}=\frac{y}{1}=\frac{z}{1}$ and has a semi-yerticanangle of 30°.
c) Find the equation of right circulareylinder of radius 4 and axis is the line $\frac{x}{1}=\frac{y}{-1}=\frac{z}{1}$

Q7) a) If the sphere $x^{2}+y^{2} z^{2}+2 \lambda x+3 \lambda y+4 \lambda z-1-5 \lambda=0$ cuts the sphere $x^{2}+y^{2}+z^{2}+3 x-3 y+3 z-56=0$, orthogonally, then find the value 6 of λ.
b) Find the equation of fight circular cone whose vertex is at origin, generator is the line $\frac{x}{1}=\frac{y}{2}=\frac{x}{3}$ and axis is the line $\frac{x}{-1}=\frac{y}{1}=\frac{z}{2}$
c) Find the equation of right circular cylinder of radius 2 , whorse axis passes through the origin and has direction ratios 1,1, .

Q8) a) Change order of integration and evaluate $\int_{0}^{\infty} \int_{\curvearrowright}^{\infty} \frac{e^{-\infty}}{\nu} d x d y$
b) Find the area of cardioide $r=a(1+\cos \theta)$ yising double integration.
c) Prove that moment of inertia of the area included between curves $y^{2}=4 a x$ and $x^{2}=4$ ay about x-axis is $\frac{144}{35} \mathrm{Ma}^{2}$, given that density $\rho=\frac{3 \mathrm{M}}{16 a^{2}}$ and M is the mass.

Q9) a) Change following doúble integration to its polar form and evaluate $\iint_{R} \frac{x^{2} y^{2}}{x^{2}+y^{2}} d x d y$ where R is annulus between $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
b) Prove thatthe volume bounded by cylinders $y^{2}=x$ and $x^{2}=y$ and planes

$$
z=0,+\dot{+} y+z=2 \text { is } \frac{11}{30}
$$

c) Find the x-co-ordinate of centre of gravityof a toop of $r=a \sin 2 \theta$ in first quadrant, given that area of 100 p is $A=\frac{\pi a^{2}}{8}$.

