P-3919

SE	АТ	No
		110

P. State Con

T No.	:	

[Total No. of Pages : 4

[6001]-4002

F.E.

ENGINEERING PHYSICS

(2019 Pattern) (Semester - II) (Credit System) (107002)

Time : 21/2 Hours]

[Max. Marks : 70

Instructions to the candidates :

- 1) Question No. 1 is compulsory.
- 2) Q.No. 2 to Q.No. 9 carry equal marks.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- 5) Use of electronic calculator is allowed.

Physical Constants :

- 1) Mass of electron
- 2) Charge on electron
- 3) Planek's constant

Q1) Write correct option of given questions with Answer. (1 mark each): [10]

6.63

10⁻³⁴J-sec.

 $9.1 \times$

i) According to Dr. Broglies hypothesis, the wavelength $\lambda = \frac{h}{n}$ is applicable

for

a) Photons

- b) Matter particles
 - c) Either matter particles or photons
 - d) Both matter particles and photons
- ii) According to Heisenberg's uncertainty principle-

a)
$$\Delta x.\Delta p \ge \frac{h}{2n}$$

c)
$$\Delta x.\Delta p \ge \frac{n}{6n}$$

b) $\Delta x \Delta p \le \frac{h}{2n}$ d) $\Delta x \Delta p \le \frac{h}{4n}$

P.T.O.

iii)	In Schrodinger's time independent equation of a particle is independent of time.						
	a)	Kinetic energy	b)	Potential energy			
	c)	Total energy	0 d)	Wave function			
iv)	Fern elect	ni level for a metal or condu	actor is h	ighest energy level occupied by			
	a)	0°C	b)	0°F			
	c)	0°K	d)	None of the above			
v)	Hall	effect is true for					
	a) Metals only						
	b)	Semiconductors only		3			
	c)	For N-type semiconductor	rs only				
	d)_(Both metal and semicondu	ctors	Stree C			
vi)	The	magnetic materials exhibit	the pro	perty of magnetisation because			
	≥•f _	·	2				
	a)	Orbital motion of electron	b)	Spin of electrons			
•••	c)	Spin of nucleus	A A	All of the above			
V11)	A su	iperconductor is a perfect	n n	naterial.			
	a)	Insulator	b)	Semiconductor			
	c)	Dielectric	d)	Diamagnetic			
V111)	supe	erconductors is called	ough an	insulating layer between two			
	a) <	Josephson effect	b)	Onnes effect			
ć	c)	Meissner effect	d)	Kerr effect			
ix)	With	n increase in size of nanopa	rticles its	s hardness O			
	a)	Increases	b)	Decreases			
	c)	Remains same	d)	Difficult to predict			
x)	In Non destructive testing (NDT) the physical and chemical properties of sample						
	sam]	Changes	b)	Do not changes			
	a)	Depends on temp	d)	Does not depend on temp			
	0)	Depends on temp	u)				
[6001]-	400	2 2	N.A.				

- Q2) a) Deduce Schrodinger's time independent wave equation.
 - b) State and explain Heisenberg's uncertainty principle using the except of small and large wave packet. [5]

[6]

c) Calculate the energy difference between the ground state and first excited state of an electron in the rigid box of length 1A°. [4]

OR

- Q3) a) State De Broglie's hypothesis. Derive an expression for De Broglies wavelength of an electron accelerated by a potential difference of 'V'.[6]
 - b) Define wave function. Write the conditions of well behaved wave function. [5]

c) The uncertainty in the location of a particle is equal to its De Broglie wavelength. Show that the uncertainty in the velocity to a particle is equal to the particle velocity itself. [4]

- Q4) a) With the help of bond theory of solids explain the classification of solids into conductors, semiconductors and insulators. [6]
 - b) What are solar cells? Draw I-V characteristics of solar cells and define the terms i) Short circuit current and ii) Open circuit voltage. [5]
 - c) The Hall coefficient of a specimen of a doped silicon is found to be $3.66 \times 10^{-4} \text{ m}^3/\text{c}$. The resistivity of the specimen is $1 \times 10^{-2} \Omega \text{m}$. Determine the mobility of the charge carriers.

OR

- Q5) a) Explain the Hall effect with a neat labelled diagram. Derive an expression for Hall voltage.
 [6]
 - b) Define Fermi level in semiconductors. For a P-N junction diode draw energy band picture showing the position of Fermi level in i) Zero bias and ii) Forward bias.
 - c) Calculate the number of donors atoms which must be added to an intrinsic semiconductors to obtain the resistivity of $10^{\circ} \Omega$ cm. (Given mobility of electrons = $1000 \text{ cm}^2/\text{V}$ sec.) [4]

[6001]-4002

3

- a) Differentiate between diamagnetism, paramagnetism and ferromagnetism. **Q6**) (Any two points) [6]
 - b) Define:
 - Magnetic permeability and i)
 - Magnetic susceptibility ii)
 - Obtain the relation between them.
 - c) The critical magnetic field of niobium is 1×10^5 A/m at 8°K and 2×10^5 A/m at 0°K. Calculate the critical temperature of the element. [4]

OR

- a) Explain artificial magnetic field in brief. Distinguish between Type-I & **0**7) Type II superconductors. (Any 3 points). [6]
 - b) Explain Melssner effect in brief. Show that superconductors are AL CONTRACT characterised by perfect diamagnetism. [5]
 - Define the terms : c)
 - i) Magnetic field strength (H)
 - Magnetic induction (B) ii))
 - Magnetisation (M) (ini)
 - Relation permeability (μ_r) iv)
- What is echosounding technique? Using this technique explain non (0.8) a) destructive testing for the measurement of thickness of a metal sheet using ultrasonic waves [6]
 - b) What is Non Destructive Testing (NDT)? Distinguish between Non Destructive Testing and Destructive Testing. (Any two points) [5]
 - c) Write any four applications of nanotechnology in the field of automobile. Explain any one in brief. [4]
 - OR
- (Q9) a) Explain optical and mechanical properties of nanoparticles [6]
 - b) What are nanoparticles? What is the effect of quantum confinement on the properties of nanoparticles? [5]
 - c) An ultrasonic pulse is sent through a copper block. The echo pulse is received after 4 µs. If velocity of ultrasonic in copper is 5000 m/s, calculate the thickness of copper block. If the reflection pulse recorded after 1.253 μ s from the top what is the location of flaws? [4]

[6001]-4002

[5]

[4]