BASIC ELECTRICAL ENGINEERING (2019 Credit Patterin) (Semester - I/II) (103004)

Time : 2½ Hours]
Instructions to the candidates:

1) Solve $Q .1$ on $Q .2, Q .3$ or $Q .4, Q .5$ or $Q .6, Q .7$ or $Q .8$.
2) Figures to the right indicate full marks.
3) Neat diagrams must be drawn wherever necessary.
4) Assume suitable additional data, if necessary.
5) Use of non-programable calculator is allowed.

Q1) a) Define impedance. Draw the impedance trianglefor R-L \& R-C series cireuit.
b) OObtain the expression for currentand power, when voltage $v=\mathrm{V}_{\mathrm{m}} \sin$ ωt is applied across purely induetive circuit.
c) The series circuit having resistanee 10Ω, inductance 0.1 H and capacitance $150 \mu \mathrm{~F}$ is connected to 1 -phase, $200 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply, Calculate -
i) Inductive reactance $X I$
ii) Capacitive reactance Kc
iii) Net reactance X
iv) Impedance Z
v) Current drawn by the circuit
vi) Power factor
vii) Active power P
viii) Reactive power Q.

OR

Q2) a) If $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply is applied across the resistance of 10Ω, find equation for voltage $\&$ current.
b) Derive the expression for power, when voltage $v=V m \sin \omega t$ is applied across R-L series circuit.
c) The series circuit having resistanice 10Ω and capacitance $150 \mu \mathrm{~F}$ draws a current of 9.4 A from 1-phase, 50 Hz AC supply. Calculate
i) Capacitive reactance
ii) impedance
iii) powerfactor
iv) supply voltage
v) Active power and
vi) reactive power.

Q3) a) Défine
i) Balanced load
ii) Unbalanced load and
iii) Phase sequence.
b) Derive the EMF equation of single phase transformer.
c) Derive the relation between i) phase voltage and line voltage ii) phase current and line currentin case of balanced STAR connected $3-\mathrm{ph}$ inductive load. Assume phase sequence RYB. Draw the circuit diagram \& necessary phasor diàgram.

Q4) a) Define the voltage regulation and efficiency of transformer along with formula.
b) The maximum flux density in core of a $250 / 1000 \mathrm{~V}, 50 \mathrm{~Hz}, 1-\mathrm{ph}$ transformer is 1.2 T . If EMF/turn is 10 V , calculate i) Primary \& secondary number of turns ii) area of cross section of core./
c) Three identical impedance each of $\frac{\square}{}+\mathrm{j} 8 \Omega$ are connected in star across 3-ph, 400 V, 50 Hz ac supply. Determine.
i) phase voltage
ii) phase current and line current
iii) power factor, 3-ph.active, reactive and apparent power

Q5) a) State and explain KCL \& KVL
b) Calculate the current flowing through $4 \Omega(\mathrm{AB})$ for the circuit shown in fig 56, usingkirchhoff's Laws. All resistances are in Ω

c) Derive the equations to convert Delta connected resistive circuit into equivalent Star circuit.

Q6) a) Explain the practical current source by means of
i) Symbol of representation
ii) Value of internat resistance
iii) Graphs between V and I
b) Calculate the current flowing through $4 \Omega(\mathrm{PQ})$ for the circuit shown in fig bb, using Superposition Theorem. All resistances are in Ω

c) Calculate the current flowing through $4 \Omega(\mathrm{PQ})$ for the circuit shown in fig 6b, using Thevenin's Theorem.

Q7) a) Define resistance of the material \& state factors on which it depends.[3]
b) Explain construction andworking principle of Lithium ion battery.
c) Derive an expression for insulation resistance of a single core cable with the necessary diagram.

Q8) a) State the material used for positive plate, negative plate \& electrolyte for lead acid battery.
b) The current flowing at the instant of switching 240 U, 40 Watt lamp is 2 A. The TCR of tungsten filament is 0.0055 per degree Celsius at $20^{\circ} \mathrm{C}$. Determine.
i). temperature of filament of the lamp ii) working current
c) If α_{1} and α_{2} are the RTC of a conducting material at $t_{1}^{0} \mathrm{C}$ and $t_{2}^{0} \mathrm{C}$ respectively prove that $\alpha_{2}=\frac{\hat{\imath}}{1+\alpha_{1}\left(t_{2}-t_{1}\right)}$ \& hence, obtain $\alpha_{t}=\alpha_{0} /\left(1+\alpha_{0} . t\right)$

