Total No. of Questions :4]

P4

FE/Insem./APR-4

SEAT No. :

[Total No. of Pages : 2

F.E (Semester - II)

103004 : BASIC ELECTRICAL ENGINEERING

(2019 Pattern)

Time : 1 Hour]

c)

[Max. Marks : 30

- Instructions to the candidates:
 - 1) Answer Q1 or Q2, Q3 or Q4.
 - 2) Neat diagrams must be drawn wherever necessary.
 - 3) Figure to right indicate full marks.
 - 4) Use of Non-Programmable Scientific Calculators is allowed.
 - 5) Assume Suitable Data if necessary.

Q1) a) Define the terms:

i) Reluctance ii) Magnetic Flux Density and iii) Mutual inductance[3]

- b) Compare Electric circuit and Magnetic Circuit, clearing stating similar and dissimilar points. [6]
- c) Iron ring of mean diameter 25 cm & relative permeability of 1000 is uniformly wound with 500 turns. Find current required to produce a flux density of 1 Tesla in the ring. If an air gap of 1 mm is cut in the ring, calculate new value of current to maintain the same flux density in the ring.

OR

- Q2) a) Compare series & parallel magnetic circuits.
 - b) Derive the expression for energy stored in an inductor. [6]
 - Two coils A & B have self inductances of 120 μ H and 300 μ H respectively. A current of 2 Amp in coil A, produces flux linkage of 200 μ Wb turns in coil B. Calculate -

i) Mutual inductance

ii) Coefficient of coupling k &

iii) Average emf induced in coil B, when the current in coil A is switched off in 0.05 sec. [6]

P.T.O.

[3]

- *Q3*) a) Obtain the expression for capacitance of parallel plate capacitor. [3]
 - Derive the expression for rms value of a sinusoidal alternating current b) in terms of its peak value. [6]
 - Three capacitors 2 μ F, 4 μ F, and 6 μ F, are connected in series across c) 200 V DC supply. Find equivalent capacitance and voltage across each capacitor. [6]

OR

- An alternating voltage is given is by v=141.4 sin 377 t. Find its **Q4**) a) **RMS** value average value iii) frequency i) ii) [3]
 - Derive the expression for average value of a sinusoidal alternating current **b**) in terms of its peak value. Also write the formula for
 - **Amplitude** Factor Form Factor and i).9 ii) [6]
 - c) The rms value of 50 Hz sinusoidal alternating current is 20A. At t=0, its value becomes 10A. Write down the equation for current. Also find the magnitude of current at t=6 ms. [6]