Total No. of Questions :4]
P4
FE/Insem./APR-4
F.E (Semester - II)

103004 : BASIC ELEGTRICAL ENGINEERING (2019 Pattern)

Time : 1 Hour]
[Max. Marks : 30
Instructions to the candidates:

1) Answer Q1 or Q2, Q3 or Q4.
2) Neat diagrams mustbe drawn wherever necessary.
3) Figure to right indicate full marks.
4) Use of Non-Programmable Scientific Calculators is allowed.
5) Assume Suitable Data if necessary.

Q1) a) Define the terms:
i). Reluctance ii) Magnetic Flux Density andiii) Mutual inductance[3]
b) Compare Electric circuit and Magnetio citcuit, clearing stating similar and dissimilar points.
c) Iron ring of mean diameter $25 \mathrm{~cm} \& ~$ relative permeability of 1000 is uniformly wound with 500 turns. Find current required to produce a flux density of 1 Tesla in the ring. If an air gap of 1 mm is cut in the ring, calculate new value of curreet to maintain the same flux density in the ring.

Q2) a) Compare series \& parallel magnetic circuits.
b) Derive the expression for energy stored in an inductor.
c) Two coils A \& B have self inductances of $120 \mu \mathrm{H}$ and $300 \mu \mathrm{H}$ respectively. A current of 2 Amp in coil A, produces flux linkage of 200 $\mu \mathrm{Wb}$ - turns in coil B. Calculate -
i) Mutual inductance
ii) Ebefficient of coupling k \&
iii) Average emf induced in coil B, when the current in coil A is switched off in 0.05 sec .

Q3) a) Obtain the expression for capacitance of parallel plate capacitor.
b) Derive the expression for rms value of a sinusoidal alternating current in terms of its peak value.
c) Three capacitors $2 \mu \mathrm{~F}, 4 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$, are connected in series across 200 V DC supply Find equivalent capacitance and voltage across each capacitor.

OR

Q4) a) An alternating voltage is given is by $v=141.4 \sin 377 \mathrm{t}$. Find its
i)
RMS इafue
ii) average value iii) frequency
b) Derive theexpression for average value of a sinusoidalalternating current in ternas of its peak value. Also write the formulaifor
i) Form Factor and
ii) Amplitude Factor
[6]
c) The rms value of 50 Hz sinusoidalaternatidg current is 20A. At $t=0$, its value becomes 10A. Write dowi the equation for current. Also find the magnitude of current at $\mathrm{t}=6 \mathrm{~ms}$.

