Total No. of Questions-8]
Seat
No.
[Total No. of Printed Pages-4
[5667]-105

F.E. EXAMINATION, 2019

ENGINEERING PHYSICS

(2015 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Neat diagrams must be drawn wherever necessary.
(ii) Figures to the right indicate full marks.
(iii) Use of logarithmic tables, slide, rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
(iv) Assume suitable data, if necessary.

$$
\begin{aligned}
& \text { Given : } e=1.6 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{Js} \\
& c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& m_{e}=9.1 \times 10^{-31} \mathrm{~kg}
\end{aligned}
$$

1. (a) Explain the theory of formation of Newton's rings. Prove that the diameters of bright rings are proportional to square root of odd natural numbers.
(b) Explain the following :
(i) Piezoelectric effect
(ii) Magnetostriction effect with diagrams.
(c) Calculate the depth of sea if the time interval between the emitted signal and the echo received is 2 sec. in SONAR studies. Assume the velocity in sea water as $1490 \mathrm{~m} / \mathrm{s}$.
[3]

Or

2. (a) Derive the equation for resultant amplitude in Fraunhofer diffraction due to single slit and obtain the conditions to principal maximum and minima.
(b) Explain any two factors with remedies which affect architectural acoustics of auditorium.
(c) In a Newton's rings experiment, the diameter of certain bright ring is 0.65 cm and that of 10 th bright, ring beyond it is 0.95 cm . If $\lambda=6000 \AA$, calculate the radius of curvature of a convex lens in contact with glass plate.
3. (a) Explain Huygen's theory of double refraction.
[6]
(b) Draw the energy band diagrams for $p-n$ junction diode in : (1) Zero bias
(2) Forward bias
(3) Reverse bias conditions.
(c) Calculate the conductivity of pure silicon at room temperature when the concentration of charge carriers is 1.6×10^{10} per cm^{3}. Given : $\mu_{e}=1500 \mathrm{~cm}^{2} /$ volt-sec, $\mu_{h}=500 \mathrm{~cm}^{2} / \mathrm{volt}-\mathrm{sec}$.

Or
4. (a) Define Fermi level in conductors. Using Fermi-Dirac probability distribution function, show that Fermi level in intrinsic semiconductor lies exactly at centre of the band gap. [6]
(b) Explain the following :
(i) Stimulated emission
(ii) Population inversion
(iii) Metastable state.
(c) Explain the construction process in holographic technique. [3]
5. (a) Derive Schrodinger's time independent wave equation.
(b) State de Broglie hypothesis. Derive the equation for de Broglie wavelength in terms of kinetic energy.
(c) An electron in an infinite potential well is in ground state. Find the fourth energy level of electron in eV .
6. (a) Define phase velocity and group velocity.

Show that :
(i) Phase velocity of matter waves is e^{2} / v.
(ii) Group velocity of matter waves is equal to particle velocity.
(b) Explain the physical significance of wave function ψ and $|\psi|^{2}$.
(c) Find the de Broglie wavelength of electron of energy 10 keV .
7. (a) Define superconductivity. Distinguish between Type-I and Type-II superconductors.
(b) Explain synthesis of nanoparticles using ball milling method.
(c) Explain any two applications of Nanotechnology in brief. [3]

Or

8. (a) How can gold nanoparticles be synthesized using colloidal route ? Explain the nucleation and growth of nanoparticles using LaMer diagram.
(b) Explain the BCS theory of superconductors.
(c) The critical temperature of a superconductor with isotopic mass 200 is 5 K . Calculate the critical temperature of superconductor when isotopic mass is 196.
