F.E. (Common)

ENGINEERING MECHANICS

(2019 Pattern)

Time : 2½ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
2) Neat diagram must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Assume suitable data, if necessary and clearly state.
5) Use of cell phone is prohibited in the examination hall.
6) Use of electronic pocket calculator is allowed.

Q1) a) The weight of the cycle is 500 N which act at center of gravity G as shown in Fig. 1 a. Determine the normal reaction at A and B when the cycle is in equilibrium.

Fig. 1 a
b) Pole OA is kept in vertical position using three guy-wires AB, AC and AD as shown in Fig. 1 b. Calculate the tension in each wire, if the weight of the pole is 5000 N .

Fig. 1 b
c) Explain hinge, roller and fixed support with maximum number of reaction exerted on it with suitable sketches.

OR
Q2) a) Find the reaction exerted at A and B on the sphere of 200 N kept in a trough as shown in Fig. 2 a.

Fig. 2 a
b) A square mat foundation supports four column as shown in Fig. 2 b. Determine the magnitude and point of application of the resultant with respect to origin.

Fig. 2 b
c) State the equation of equilibrium for concurrent, parallel and general force system.

Q3) a) Determine the forces in all members of the truss loaded and supported as shown in Fig. 3 a.

Fig. 3 a
b) Determine the x and y components of forces acting at joint B on the horizontal member BD for a frame loaded and supported as shown in Fig. 3 b.

Fig. 3 b
c) Define two force and multi force members.

OR
Q4) a) Determine the forces in the members DE, CE and BC for the truss loaded and supported as shown in Fig. 3 a.
b) Determine the reactions at support A and B for the cable loaded and supported as shown in Fig. 4 b.

Fig. 4 b
c) Explain imperfect, perfect and redundant truss with a sketches.

Q5) a) Automobile A and B are traveling in adjacent lane at $\mathrm{t}=0$ and have the position and speed as shown in the Fig. 5 a. Knowing that automobile A has a constant acceleration of $0.6 \mathrm{~m} / \mathrm{s}^{2}$ and B has constant deceleration of $0.4 \mathrm{~m} / \mathrm{s}^{2}$, determine when and where A will overtake B. Also determine the speed at that time.

Fig. 5 a
b) A stone thrown vertically upward comes back to ground in 8 s . Determine its velocity of projection and maximum height attained by the stone. [4]
c) A ball is thrown by a player from 5 m above ground level, clears the 25 m high wall placed 100 m ahead of the player. If the angle of projection of the ball is 60°, determine the velocity of projection of the ball.

OR

Q6) a) A car comes to complete stop from an initial speed of $50 \mathrm{~m} / \mathrm{s}$ in a distance of 100 m . With the same constant acceleration, what would be the stopping distance s from an initial speed of $70 \mathrm{~m} / \mathrm{s}$.
b) A golfer hits the golf ball from point A with an initial velocity of $50 \mathrm{~m} / \mathrm{s}$ at an angle of 25° with the horizontal shown in Fig. 6 b. Determine the horizontal distance AB and maximum height it attain.

Fig. 6 b
c) A train enters a curved horizontal section of track at a speed of $100 \mathrm{~km} / \mathrm{h}$ and slows down with constant deceleration to $50 \mathrm{~km} / \mathrm{h}$ in 12 seconds. An accelerometer mounted inside the train records a horizontal acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ when the train is 6 seconds into the curve. Calculate the radius of curvature ρ of the track for this instant.

Q7) a) The conveyor belt is designed to transport packages of various weights. Each 10 kg package has a coefficient of kinetic friction $\mu_{\mathrm{k}}=0.15$. If the speed of the conveyor is $5 \mathrm{~m} / \mathrm{s}$ and then it suddenly stop, determine the distance the package will slide on the belt before coming to rest. Refer Fig. 7 a.

Fig. 7 a
b) The pendulum bob has a mass m, length 1 m and is released from rest as shown in Fig. 7 b when $\theta=0^{\circ}$. Determine the tension in the cord as function of the angle of descent θ. Neglect the size of bob.

Fig. 7 b
c) A 20 Mg railroad car moving with $0.5 \mathrm{~m} / \mathrm{s}$ speed to the right collides with a 35 Mg car which is at rest, if the coefficient of restitution between the two cars is $\mathrm{e}=0.65$ determine the speed of the cars after the collision.[5]

OR
Q8) a) Block A has a weight of 40 N and block B has a weight of 30 N . They rest on a surface for which the coefficient of kinetic friction is $\mu_{k}=0.2$. If the spring has a stiffness of $\mathrm{k}=300 \mathrm{~N} / \mathrm{m}$, and is compressed 0.05 m , determine the acceleration of each block just after they are released. [6]

Fig. 8 a
b) The man has a mass of 80 kg and sits 3 m from the center of the rotating platform. If the coefficient of static friction between the clothes and the platform is $\mu_{\mathrm{s}}=0.3$ and tangential component of acceleration is $0.4 \mathrm{~m} / \mathrm{s}^{2}$, determine the time required to cause him to slip.
c) The velocities of two identical steel blocks of mass 0.6 kg before impact are $\mathrm{v}_{\mathrm{A}}=4 \mathrm{~m} / \mathrm{s}$ rightward and $\mathrm{v}_{\mathrm{B}}=2 \mathrm{~m} / \mathrm{s}$ leftward. After impact the velocity of block B is observed to be $2.5 \mathrm{~m} / \mathrm{s}$ to the right, determine the coefficient of restitution between the blocks.

みみ\&

