Total No. of Questions-8]

Seat

No.
[Total No. of Printed Pages-4
[5667]-1007
F.E. (All Branches) (I Sem.) EXAMINATION, 2019 BASIC ELECTRICAL ENGINEERING (2019 PATTERN)

Time : $21 / 2$ Hours

Maximum Marks : 70
N.B. :- (i) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
(ii) Neat diagram must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of Non-Programmable Scientific Calculators is allowed.
(v) Assume suitable data, if necessary.

1. (a) Define active, reactive and apparent power. State their units. Also draw the power triangle for R-L circuit.
(b) What is series resonance ? Derive the expression for resonant frequency.
(c) The R-L circuit when supplied by $180 \mathrm{~V}, 50 \mathrm{~Hz}$ ac voltage, the voltage drop across the inductance is 150 V . The current drawn by the circuit is 5 A . Calculate :
(i) inductive reactance
(ii) inductance
(iii) resistance
(iv) V_{R}
(v) P.F.
(vi) Phasor diagram.

Or

2. (a) Obtain the expression for current, when voltage $v=\mathrm{V}_{m}$, \sin ωt is applied across purely inductive circuit.
(b) Derive the expression for power, when voltage $v=\mathrm{V}_{m}$, sin ωt is applied across R-L series circuit. Draw the phasor diagram.
(c) The ac voltage given by $v=141.4 \sin (100 \pi t+\pi / 3)$ Volt, when applied to certain circuit, resultant current is $i=7.07$ $\sin (100 \pi t+\pi / 6)$ Amp. Draw the phasor diagram and Find : [8]
(i) impedance
(ii) circuit elements
(iii) active, reactive and apparent power.
3. (a) Define :
(i) phase sequence
(ii) balanced and unbalanced load.
(b) Derive the emf equation of 1-phase transformer.
(c) Three identical impedances each of $8+j 6 \Omega$ are connected in star across $3-\mathrm{ph}, 415 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. Calculate :
(i) line voltage, phase voltage
(ii) phase current, line current
(iii) active power
(iv) When same impedances are connected in delta across the same supply voltage, find active power.

Or

4. (a) Why are steel laminations used for construction of transformer core ? Sketch different types of laminations used for core. [3]
(b) What are losses taking place in the transformer ? State the parts in which they takes place. How to minimize these losses ?
(c) Obtain the relation between phase values and line values of voltage and current in case of balanced star connected 3-ph inductive load. Assume phase sequence RYB. Draw the necessary phasor diagram.
5. (a) Define the ideal and practical voltage sources. Draw their V-I characteristics.
(b) Find current flowing through AB using Kirchhoff's loop analysis for the circuit shown in Fig. 5(b). All resistances are in Ω. [6]

Fig. 5(b)
(c) Derive the equations to convert Delta connected resistive circuit into equivalent star circuit.

Or
6. (a) State and explain KCL \& KVL.
(b) Define :
(i) active \& passive network
(ii) linear \& nonlinear network.
(iii) unilateral \& bilateral network.
(c) Find current flowing through 3Ω using Superposition theorem for the circuit shown in Q $5(b)$ Fig. 5(b).
7. (a) Define temperature coefficient of resistance. State the factors on which it depends.
(b) Compare lead acid battery and lithium ion battery. (6 points only).
(c) The electrical load of a bungalow is as follows. Find :
(i) daily energy consumption in kWh .
(ii) monthly electricity bill for the month of 30 days at the rate of Rs 6/unit.

(III) Washing machine 2 kW ---- 01 no ---- $01 \mathrm{hr} /$ day
(IV) Geyser 2 kW ---- 01 no ---- $02 \mathrm{hrs} /$ day
(V) TV

100 W ---- 01 no ---- $06 \mathrm{hrs} /$ day [8] Or
8. (a) State the applications of lead acid battery.
(b) Prove that $\alpha_{2}=\alpha_{1} / 1+\alpha_{1}\left(t_{2}-t_{1}\right)$, all the symbols have their appropriate meaning.
(c) Explain the operation of Lithium ion battery with construction \& chemical reactions during charging and discharging. Also state its applications.

