Total No. of Questions-8]

[Total No. of Printed Pages-4

Seat No.

[5667]-1007

F.E. (All Branches) (I Sem.) EXAMINATION, 2019 BASIC ELECTRICAL ENGINEERING (2019 PATTERN)

Time : 2¹/₂ Hours

Maximum Marks : 70

- $N.B. := (i) \text{ Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.$
 - (ii) Neat diagram must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of Non-Programmable Scientific Calculators is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Define active, reactive and apparent power. State their units. Also draw the power triangle for R-L circuit. [4]
 - (b) What is series resonance ? Derive the expression for resonant frequency. [6]
 - (c) The R-L circuit when supplied by 180V, 50 Hz ac voltage, the voltage drop across the inductance is 150 V. The current drawn by the circuit is 5 A. Calculate : [8]
 - (*i*) inductive reactance
 - (*ii*) inductance
 - (iii) resistance
 - (*iv*) V_R
 - (*v*) P.F.
 - (vi) Phasor diagram.

P.T.O.

- 2. (a) Obtain the expression for current, when voltage $v = V_m$, sin ωt is applied across purely inductive circuit. [4]
 - (b) Derive the expression for power, when voltage $v = V_m$, sin ωt is applied across R-L series circuit. Draw the phasor diagram. [6]
 - (c) The ac voltage given by $v = 141.4 \sin (100 \pi t + \pi/3)$ Volt, when applied to certain circuit, resultant current is i = 7.07 $\sin (100 \pi t + \pi/6)$ Amp. Draw the phasor diagram and Find : [8]
 - (*i*) impedance
 - *(ii)* circuit elements
 - (*iii*) active, reactive and apparent power.

3. (a) Define :

- (i) phase sequence
- (*ii*) balanced and unbalanced load.
- (b) Derive the emf equation of 1-phase transformer. [6]
- (c) Three identical impedances each of $8 + j6 \Omega$ are connected in star across 3-ph, 415 V, 50 Hz ac supply. Calculate :
 - (i) line voltage, phase voltage
 - (*ii*) phase current, line current
 - (iii) active power
 - (iv) When same impedances are connected in delta acrossthe same supply voltage, find active power. [8]

[5667]-1007

[3]

- **4.** (a) Why are steel laminations used for construction of transformer core ? Sketch different types of laminations used for core. [3]
 - (b) What are losses taking place in the transformer ? State the parts in which they takes place. How to minimize these losses ?
 - (c) Obtain the relation between phase values and line values of voltage and current in case of balanced star connected 3-ph inductive load. Assume phase sequence RYB. Draw the necessary phasor diagram.
- 5. (a) Define the ideal and practical voltage sources. Draw their
 V-I characteristics. [4]
 - (b) Find current flowing through AB using Kirchhoff's loop analysis for the circuit shown in Fig. 5(b). All resistances are in Ω . [6]

Fig. 5(b)

- (*c*)
 -) Derive the equations to convert Delta connected resistive circuit into equivalent star circuit. [8]

[4]

[6]

- **6.** (a) State and explain KCL & KVL.
 - (b) Define :
 - (i) active & passive network
 - (*ii*) linear & nonlinear network.
 - (iii) unilateral & bilateral network.
 - (c) Find current flowing through 3 Ω using Superposition theorem for the circuit shown in Q 5(b) Fig. 5(b). [8]
- 7. (a) Define temperature coefficient of resistance. State the factors on which it depends. [3]
 - (b) Compare lead acid battery and lithium ion battery. (6 points only). [6]
 - (c) The electrical load of a bungalow is as follows. Find :
 - (i) daily energy consumption in kWh.
 - (ii) monthly electricity bill for the month of 30 days at the rate of Rs 6/unit.
 - (I) Tubes 40 W ---- 06 nos ---- 6 hrs/day
 - (II)
 Fans
 60 W ---- 04 nos ---- 10 hrs/day

 (III)
 Washing machine
 2 kW ---- 01 no ---- 01 hr/day

 (IV)
 Geyser
 2 kW ---- 01 no ---- 02 hrs/day

 (V)
 TV
 100 W ---- 01 no ---- 06 hrs/day [8]

8. (a) State the applications of lead acid battery. [3]
(b) Prove that α₂ = α₁/1 + α₁ (t₂ - t₁), all the symbols have their appropriate meaning. [6]
(c) Explain the operation of Lithium ion battery with construction & chemical reactions during charging and discharging. Also state its applications. [8]

Or