Total No. of Questions-8]
[Total No. of Printed Pages-4

Seat No.	

[5667]-107
F.E. (Engg.) (All Branches) EXAMINATION, 2019

BASIC ELECTRICAL ENGINEERING
(2015 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of Non-Programmable Scientific Calculators is allowed.
(v) Assume suitable data, if necessary.

1. (a) Define resistivity and state its unit. Also state the factors on which it depends.
(b) Iron ring with mean diameter 20 cm and having area of crosssection $10 \mathrm{~cm}^{2}$ is uniformly wound with 500 turns. The current flowing through the coil is 2 A and relative permeability of iron is 2000.

Calculate :
(i) mmf
(ii) reluctance
(iii) flux and
(iv) inductance of the coil.

Or

2. (a) Compare dynamically and mutually induced emf.
(b) The current flowing at the instant of switching $240 \mathrm{~V}, 60 \mathrm{~W}$ lamp is 2 A when connected to 240 V DC supply. The TCR of lamp filament at $20^{\circ} \mathrm{C}$ is 0.005 per ${ }^{\circ} \mathrm{C}$. Find working temperature and current of lamp.
3. (a) Define the following terms :

Sinusoidal waveform, cycle, instantaneous value, frequency, form factor and peak factor.
(b) Draw the circuit diagram to conduct the direct loading test on $1 \mathrm{kVA}, 230 / 115 \mathrm{~V}, 50 \mathrm{~Hz}, 1-\mathrm{ph}$ transformer. Show the proper ranges of meters with justifications. Also write down formula for voltage regulation and efficiency.
4. (a) Derive the expression of rms value of alternating current in terms of its peak value by analytical method.
(b) A $30 \mathrm{kVA}, 2200 / 220 \mathrm{~V}, 1-\mathrm{ph}, 50 \mathrm{~Hz}$ transformer have resistances 0.15Ω and 0.015Ω of HV and LV winding respectively. Find :
(i) HV and LV winding current.
(ii) η at full load and pf 0.8 lag if iron losses are 75% of full load copper losses.
5. (a) Draw the impedance and admittance triangle ? State their components along with their units.
(b) The power consumed by 3 -ph star connected load is 12000 W at $\mathrm{pf}=0.8 \mathrm{lag}$, when connected to $3-\mathrm{ph}, 400 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. Find circuit parameters.

Or

6. (a) Derive the expression for power, when voltage $v=\mathrm{V}_{m} \sin$ ωt is applied across R-C series circuit. Draw the circuit diagram and phasor diagram.
(b) Define active, reactive and apparent power. Write their equations and state their units. Also draw the power triangle.
7. (a) State and explain KCL and KVL.
(b) Find resistance between A and B for the network shown in Fig. below. All resistances are in Ω.

Or

8. (a) Derive the equations to convert Delta connected resistive circuit into equivalent star circuit.
(b) State Superposition Theorem and write down the steps to find current through AB for network shown in Fig. below.

