Total No.	of	Questions	:	11]	

PC5148

SEAT No.:	
-----------	--

[Total No. of Pages :4

[6351]-112 F.E.

BSC-102-BES: ENGINEERING PHYSICS (2024 Pattern) (Semester-I) (Credit System)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Question No. 1 is compulsory.
- 2) Questions No. 2 to No. 11 carry equal marks.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- 5) Use of an electronic calculator is allowed.

Physical Constants:

- Mass of electron, $m_a = 9.1 \times 10^{-31} \text{ kg}$
- Charge on electron, $e = 1.6 \times 10^{-19} \text{ C}$
- Planck's constant, $h = 6.63 \times 10^{-34} \text{ J-sec}$

Q1) Multiple choice questions.

 $[10 \times 1 = 10]$

- a) The process of raising the atoms from a lower energy state to a higher one to create population inversion is called:
 - i) Pumping

- ii) Stimulated emission
- iii) Spontaneous emission
- iv) Absorption
- b) The main principle of optical fiber is:
 - i) Total internal reflection
- ii) Total internal refraction
- iii) Total internal dispersion
- iv) None of the above
- c) The full form of STM is:
 - i) Scientific technical microscope
 - ii) Scanning tunneling microscope
 - iii) Super tensile microscope
 - iv) None of the above

a)	The	wavelength of a matter wave i	_ to the velocity of the particle:			
	i)	Equal	ii)	Inversely proportional		
	iii)	Directly proportional	iv)	Independent		
e)		condition for a dark fringe in kness thin film is:	in a 1	reflected system for a uniform		
	i)	$2\mu t \cos r = n\lambda$	ii)	$2\mu t \sin r = n\lambda$		
	iii)	$2\mu t \cos r = (2n \pm 1))\lambda/2$	iv)	$2\mu t \sin r = (2n \pm 1)\lambda/2$		
f)	In a positive crystal, the velocity of the O-ray is:					
	i)	half of velocity of the E-ray				
	ii)	Less than the velocity of the I	E-ray	~ C.		
	iii)	Greater than the velocity of th	ie E-r	ay		
	iv)	None of the above)	0		
g)	Pure	e semiconductors are known as	s:			
	i)	Compound	ii)	Extrinsic		
	iii)	Doped	iv)	Intrinsic		
h)	Hall	l Effect is true for:				
	i)	Metals only	ii)	Semiconductors only		
	iii)	N-type semiconductors only	iv)	Both metals and semiconductors		
i)	Sup	erconductors are perfectly:				
	i)	Paramagnetic	ii)	Ferromagnetic		
\langle	iii)	Diamagnetic	iv)	All of the above		
j)	Nan	ostructures have sizes between	ı:			
)	i)	1-100 Å	ii)	1 - 100 nm		
	iii)	100 - 1000nm	iv)	None of the above		

Q2)	a)	With a neat labelled diagram, explain the construction, and working of a CO2 laser. [6]
	b)	If an optical fiber has a core refractive index of 1.55 and a cladding refractive index of 1.46, calculate the Numerical Aperture of the fiber. [3]
	c)	Define the following terms: [3]
		i) Metastable state
		ii) Population inversion
		iii) Stimulated emission
		OR
Q3)	a)	What is attenuation in optical fibers? Discuss in brief the various internal and external factors responsible for attenuation. [6]
	b)	What is a LASER? State important characteristics of a laser. [3]
	c)	Differentiate between step index and graded index fibers. (Any three points) [3]
Q4)	a)	Derive the Schrödinger's Time-Independent Wave Equation. [6]
	b)	For an electron accelerated by a potential difference V, derive the expression for its de Broglie wavelength. [3]
	c)	Find the lowest energy of an electron confined to a box of length 1 Å.[3] OR
Q5)	a)	With a neat labelled diagram, explain the principle, construction, and working of a Scanning Tunnelling Microscope (STM). [6]
	b)	State the properties of matter waves (Any three). [3]
	c)	If the de Broglie wavelength is 0.72 AU, then find the momentum of the particle. [3]
Q6)	a)	State the phenomenon of double refraction. Hence, explain Huygens's wave theory of double refraction. [6]
	b)	Explain the application of interference in: [3]
	J	Antireflection coating
<u>_</u>	c)	How should the Polarizer and Analyzer be oriented to reduce the intensity of the beam to ½ of its original intensity. [3]

OR

Derive the conditions for brightness and darkness for the thin parallel **Q7)** a) film of thickness t and refractive index u. [3] b) State and explain Malus's Law. A beam of monochromatic light of wavelength 5.82×10^{-7} m falls normally c) on a glass wedge of angle 20 sec. If the refractive index (RI) of glass is 1.5, find the bandwidth. [3] Explain the classification of solids into conductors, semiconductors, **Q8)** a) and insulators on the basis of band theory. [6] State the any three properties of ultrasonic waves. b) [3] c) An ultrasonic pulse is sent through a block of copper. The echo pulse is recorded after 4 µs. If the velocity of ultrasonic waves in copper is 5000 m/s, calculate the thickness of the copper block. [3] OR With a neat labelled diagram, explain the principle, construction, and **Q9**) a) working of a Piezoelectric Oscillator. Write the formula for the Fermi-Dirac probability distribution function, b) specifying the meaning of each symbol. For a P-N junction diode, draw an energy band diagram showing the c) position of the Fermi level in: [3] Forward bias mode Explain the Optical and Mechanical properties of nanoparticles. *Q10*)a) [6] b) State and Explain the Meissner effect. Show that superconductors exhibit perfect diamagnetism. [6]

OR

b) What is quantum confinement? How does it affect the properties of nanoparticles? Explain the ball milling method for the synthesis of nanoparticles. [6]

What are the types of superconductors? Distinguish between them. [6]

*Q11)*a)