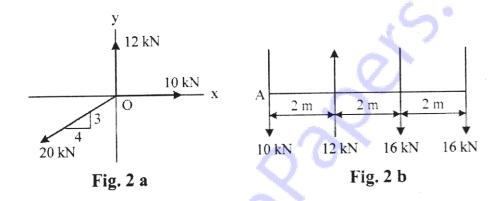
Total No. of Questions: 6]	SEAT No. :
PC-5207	[Total No. of Pages : 5

[6351]-117

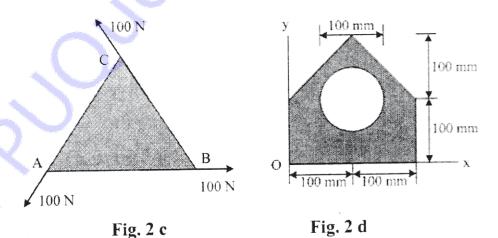
T		r.e.		
E	CSC - 104 - CVL : ENC			*
	(2024 Pattern	n) (Seme	ster - I)	
<i>Time</i> : 2 ¹	/2 Hours]		[Max. Marks:	70
Instructio	ons to the candidates :			
1)	All questions are compulsory.			
2)	Neat sketches must be drawn wh	herever neces	ssary.	
<i>3</i>)	Figures to the right indicate ful	ll marks.		
<i>4</i>)	Assume suitable data, if necessa	ıry.	0.7	
5)	Use of electronic pocket calcula	ator is allowe	ed.	
<i>6</i>)	Use of cell phone is prohibited	in the exami	nation hall.	
			X	
Q1) Wr	rite the correct option for the	following	multiple choice questions.	
i)		0 N and 40	N act an angle of 60°, find t	he
	resultant force.		[2]
	a) 54.59 N	b)	36.06 N	
	c) 50 N	d)	None of these	
ii)	A clockwise moment of magn	nitude 10 Nr	m is acting at the center of simp	oly
	supported beam of span 2 m	i. Find the r	reactions at right support. [[2]
	a) 10 N Upward	b)	10 N Downward	
	c) 5 N Downward	d)	5 N Upward	
iii)	A block of weight 200 N i	s placed on	n rough horizontal plane. If t	he
	coefficient of static friction b	between the	block and the horizontal plane	is
		l force requi	ired to just slide the block on t	he
	plane.		[[2]
	a) 60 N	b)	200 N	
	c) 100 N	d)	30 N	
iv)	A motorist travelling at a sp	eed of 72 k	mph sees a traffic signal 200	m
		mine the acc	celeration so that he will just st	op
/	at the signal.		[[2]
	a) 1 m/s^2	b)	-1 m/s^2	
	c) 0.5 m/s^2	d)	-0.5 m/s^2	
			D T	0

P.T.O.

- v) A boy of mass 50 kg stands in a lift. Determine the force exerted by the boy on the floor of the lift when the lift moves down with a constant acceleration of 9.81 m/s². [2]
 - a) Zero


b) 490.5 N

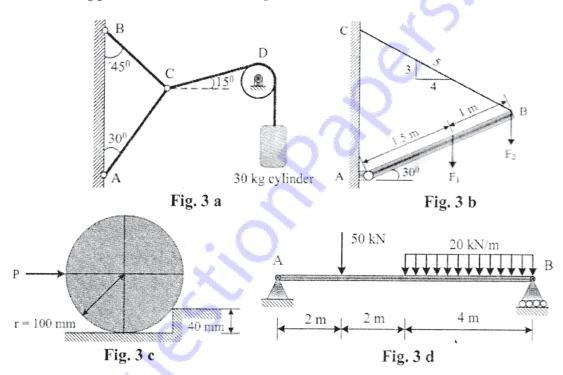
c) 981 N


d) None of these

Q2) Solve any two of the following:

- a) Find magnitude and direction of the resultant force with respect to origin 'o' for concurrent force system shown in **Fig. 2 a.** [6]
- b) Determine magnitude, direction and point of application of the resultant with reference to point A for the force system as shown in **Fig. 2 b. [6]**

- c) Determine the magnitude and direction of resultant with reference to point A for the force system shown in **Fig. 2** c if side of equilateral triangle is 1 m.
- d) Determine the y coordinate of centroid of the shaded area as shown in Fig. 2 d. [6]


[6351]-117

Q3) Solve any two of the following:

a) Three cables are joined at the point C as shown in **Fig. 3 a.** Determine the tension in cable AC and BC caused by the mass of the 30 kg cylinder.

[6]

- b) The boom supports two vertical loads, F_1 and F_2 as shown in **Fig. 3 b.** If the cable CB can sustain a maximum load of 1500 N before it fails, determine the critical loads F_1 and F_2 if $F_1 = 2F_2$. [6]
- c) Determine the force P shown in **Fig. 3 c** required to begin rolling the 100 mm radius uniform cylinder of mass 100 kg over the obstruction of height h =40 mm. [6]
- d) Determine the support reaction for the simply supported beam loaded and supported as shown in **Fig. 3 d**. [6]

Q4) Solve any two of the following:

- a) Block of mass 10 kg rest on an inclined plane shown in **Fig. 4 a.** If the coefficient of static friction between block and plane is 0.25, determine the maximum force P to maintain equilibrium. [6]
- b) A flexible cable which supports the 100 kg block is passed over a fixed circular drum shown in **Fig. 4** b subjected to a force P to maintain equilibrium. If the coefficient of friction between the cable and drum is $\mu_s = 0.3$, determine the range of P. [6]

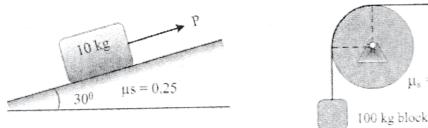
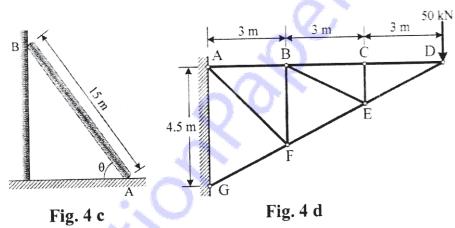



Fig. 4 a

Fig. 4 b

 $\mu_{\rm s} = 0.3$

- c) The 15 m ladder has a uniform weight of 80 N. It rest against smooth vertical wall at B and horizontal floor at A. If the coefficient of static friction between ladder and floor at A is $\mu_s = 0.4$, determine the smallest angle θ with vertical wall at which the ladder will slip. **Refer Fig. 4 c.[6]**
- d) Identify the zero force member and find forces in remaining members of the truss loaded and supported as shown in **Fig. 4 d**. [6]

Q5) Solve any two of the following:

- a) A truck travels 164 m in 8 s and decelerated at a constant rate of 0.5 m/s². Determine (i) its initial velocity, (ii) its final velocity, (iii) the distance travel during the first 0.6 s. [6]
- b) The acceleration of a particle is given by a = 4t 30, where a is in m/s² and t is in seconds. If at t = 0, v = 3 m/s and s = -5 m then determine the velocity and displacement at t = 3 s. [6]
- c) A car is traveling along a circular curve that has a radius of 50 m. If its speed is 16 m/s and tangential component of acceleration a_t is 8 m/s², determine the magnitude of its total acceleration at this instant. [6]

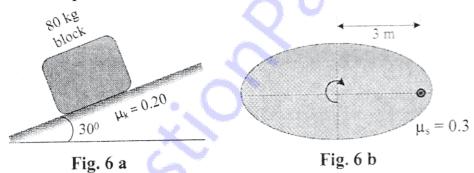

d) The ball is kicked with an initial velocity $V_A = 8$ m/s at an angle $\theta_A = 40^\circ$ with horizontal as shown in **Fig. 5 d**. Find the time of flight and maximum horizontal distance AB travel by ball. [6]

Fig. 5 d

Q6) Solve any two of the following:

- a) An 80 kg block rests on a plane as shown in the **Fig. 6 a**. Find the acceleration with which block slides down using Newton's second law if coefficient of kinetic friction is, $\mu_k = 0.20$. [6]
- b) The man has a mass of 80 kg and sits 3 m from the center of the rotating platform as shown in **Fig. 6 b**. Due to the rotation his speed is increased from rest by 0.4 m/s². If the coefficient of static friction between his clothes and the platform is, $\mu_s = 0.3$, determine the time required to cause him to slip.

c) The identical 1.2 kg collars A and B are sliding on a frictionless rod as shown in **Fig. 6 c**. Knowing that the coefficient of restitution, e = 0.65, determine the velocity of each collar after impact. [6]

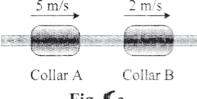


Fig. 6 c

d) A ball has a mass of 30 kg and is thrown.upward with a speed of 15 m/s. Determine the time to attain maximum height using impulse momentum principle. Also find the maximum height. [6]

$$\nabla \nabla \nabla \nabla$$