
[Total No. of Pages : 5

# ENGINEERING MECHANICS (2019 Pattern) (Semester - I) (101011) 

Time: 2½ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Answer Q. 1 or Q. 2, Q. 3orQ. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
2) Neat sketches must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Assume suitable data, if necessary.
5) Use of electronic pocket calculator is allowed.
6) Use of cell phone is prohibited in the examination hall.

Q1) a) A 1.5 m cable placed around a crate assshown in Fig. 1 a. If the mass of the crate is 300 kg , determine the tension in the cable.
b) A rectangular plate is supported horizontally by three cables at A, B and C as shown in Fig. 10. II weight of the plate is 350 N , determine the tensions in the cables at $\mathrm{A}, \mathrm{B}$ and C .


Fig. 1 a


Fig. 1 b
c) Sate the component of reaction at roller, hinged, fixed and rocker support.

## OR

Q2) a) The boom is intended to support two vertical loads, $\mathrm{F}_{1}$ and $\mathrm{F}_{2}$ as shown in Fig. 2 a. If the cable CB can sustain a maximum load of 1500 N before it fails, determine the critical loads $\mathrm{F}_{1}$ and $\mathrm{F}_{2}$ if $\mathrm{F}_{1}=2 \mathrm{~F}_{2}$. Also determine the reaction at A .
b) Three parallel bolting forces act on the rim of the circular plate as shown in Fig. 2 b. Determine the magnitude, nature and point of application of the resultant force with respect to 0 origin O.


Fig. 2 a


Fig. 2 b
c) Find suppoit reaction at A and B for the beam AB as shown in Fig. 2 c.


Fig. 2 c

Q3) a) Identify the zero force membersand find forces in the remaining members for the pin jointed truss as shown in Fig. 3 a.
b) The cable segment supports the loading as shown in Fig. 3 b. Determińé the support reactions at $A$ and $B$. Also find maximum tension in segenent of the cable.
c) Differentiate trussand frame with suitable sketch.


Fig. 3 a


Fig. 3 b

OR

Q4) a) Determine the forces in the members $\mathrm{CE}, \mathrm{BE}$ and BD of the truss as shown in Fig. 3 a.
b) Determine the components reaction acting on each members AB and BC of a frame as shown in Fig. 4 .
c) The maximum tension is 200 N for the cable profiles ABCD as shown in Fig 4 c. Determine the force $P$ at $B$ and $C$ to keep the segment $B C$ in horizontal position. Also find tension in segment BC .


Fig. 4 b


Fig. 4 c

Q5) a) A car comes to rest from an initia speed of $80 \mathrm{~km} / \mathrm{h}$ in a distance of 30 m . With the same constant acceleration, determine the distance 's' for which the car comes to rest from ankinitial speed. of $110 \mathrm{~km} / \mathrm{h}$.
b) A particle moves along thepath $x=\left(8 t^{2}\right)$ and $y=\left(t^{3}+5\right)$, where $x$ and $y$ is in m and t is in seconds, Determine the magnitude of the particle's velocity and acceleration whept $=3 \mathrm{~s}$.
c) A projectile is launched with a speed of $\mathrm{v}_{0}=25 \mathrm{~m} / \mathrm{s}$ at an angle of $\theta=30^{\circ}$ with horizontal as shown in Fig. 5 c. Determine the maximum distance travel by projectile along horizontal and vertical direction. [6]


Fig 5 c
OR
Q6) a) The motion of a particle is defined by $x \neq 2 t^{3}-15 t^{2}+24 t+4$, where $x$ is in m and t is in s . Determine when the velocity is zero and find position at which acceleration is zero.
b) A car is traveling along a circular curve that has a radius of 50 m . If its speed is $16 \mathrm{~m} / \mathrm{s}$ and tangential component of acceleration $a_{t}$ is $8 \mathrm{~m} / \mathrm{s}^{2}$, determine the magnitude of its total aceeleration at this instant.
c) A projectile is thrown in the air withoa speed of $8 \mathrm{~m} / \mathrm{s}$ and at an angle $\theta=30^{\circ}$ with the horizontal, as showin Fig. 6 c . Determine the horizontal distance it must travel to reach itsshighest point $B$.


Fig. 6 c

Q7) a) Api 80 kg Block rests on a plane as shown in the Fig. 7 a. Find the acceleration with which block slides down using Newton's second law if coefficient of kinetic friction is, $\mu_{\mathrm{k}}=0.20$.
b) Tbependulum bob has a mass $m$ and is released from rest as shown in Fi.g. 7 b when $\theta=0^{\circ}$. Determine the tensionin the cord as function of the a angle of descent $\theta$. Neglect the size of bob?


Fig. 7a


Fig. 7 b
c) A 20 Mg railroadrear moving with $0.5 \mathrm{~m} / \mathrm{s}$ speed to the right collides with a 35 Mg car which is at rest. If the coefficient of restitution between the two cars is $\mathrm{e}=0.65$, determine the speed of the cars after the collision.

Q8) a) The system shown in Fig. 8 a is initially at rest. Neglecting axle friction and mass of pulley, determine the acceleration of 200 kg block A.
b) The man has a mass of 80 kg and sits 3 m from the center of the rotating platform as shown in Fig. 8 b. Dueto rotation his speed is increase from rest by $a_{t}=0.4 \mathrm{~m} / \mathrm{s}^{2}$. If the coefficient of static friction between the clothes and the platform is $\mu_{\mathrm{s}}=0.3$, determine the time required to cause him to slip.


Fig. 8 a


Fig. 8 b
c) A ball has a mass of 30 kg and is thrown upward with a speed of $15 \mathrm{~m} / \mathrm{s}$. Determine the time to attain maximum heighysing impulse momentum principle. Also find the maximum hejght.

