## F.E. (All Branches)

## BASIC ELECTRICAL ENGINEERING (2019 Pattern) (Credit System) (Semester - I/II) (103004)

Time : $2^{1 ⁄ 2}$ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) AttemptQ. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q.7or Q. 8
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Assume suitable data, if necessary.
5) Use of non-programmable electronic pocket calculator is permitied.

Q1) a) Derive,the expression for resonant frequency in andLC series circuit.[4]
b) A sinasoidal AC voltage given by $v=\mathrm{Vm} \sin \omega_{i} f$ is applied across a pure inductor. Obtain the following for this circuit?
i). Expression for the instantaneouscurrent
ii) Phasor diagram. waveforms of instantaneous voltage and current
iii) Expression for the instantaneous power
c) A coil of resistance $24 \Omega$ has a reactance of $32 \Omega$ when connected across a single phase voltage givenby $v=566 \sin 314 t$. Find:
i) Frequency
ii) Rms value of current
iii) Power factor
iv) Equation of the resultant current

Q2) a) State the power factor in case of following circuits:
i) A purely resistive circuit
ii) A purely induct've circuit
iii) A purely capacitive circuit
iv) An RLC series circuit under resonance
b) Obtain the expression for power in an R-C series circuit when supplied with $v=\mathrm{V} m \sin w t$.
c) A series R-L-C circuit consists of $\mathrm{R}=10 \Omega \mathrm{~L}=0.3 \mathrm{~T} 8 \mathrm{H}$ and $\mathrm{C}=63.6$ $\mu \mathrm{F}$. This circuit is supplied by source of emf given by $e(t)=100 \sin 314 \mathrm{t}$. Find:
i) Expression for $\mathrm{i}(\mathrm{t})$
ii) Phase angle between voltage and current
iii) Power factor of circuit
iv) Active power consumed

Q3) a) Define the following in the context of three phase AC systems:
i) Symmetrical AC supply
ii) Phase Sequence
iii) Balanced Load
b) Derive the emf equation of a single phase transformer. Hence obtain the transformation ratio.
c) Three impedances eaçh of $(3-\mathrm{j} 4) \Omega$ are connected in delta across a 3-phase. 230 V/supply. Calculate:
i) Phaseand lime currents
ii) Power factor of the load
iii) Power delivered to the load U Or OR
Q4) a) Compare an autotransformer with a conventional two-winding transformer by mentioning any three differences.
b) Prove that the three phase delta connected balanced load consumes thrice the power consumed by that of the star comnected load.
c) The primary winding of a single phasentransformer is connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The secondary winding has 1500 turns. If the maximum value of the core flux, is 000215 Wb , determine
i) secondary induced enf
ii) number of turns in the primary
iii) cross sectional area.of thecore if the maximum value of flux density $\%$ is 0.1 T
iv) whether it is a stepup or a step down transformer?

Q5) a) State and briefly explain Kirchhoff's Laws for DC circuits.
b) Obtain the relations for converting delta connected resistances into equivalent star connection.
c) Find the current through $1 \Omega$ resistance of the circuit shown in Fig. below using Thevenin's Theorem.


OR

Q6) a) Define the following terms:
i) Active Network and Passive Network
ii) Lumped Network and Distrebuted Network
b) Find the current through branch AB of the circuit shown in Fig. 2 below by applying Kirchhoff's Law/s.
[6]

Fig. 2
c) State Superposition Theorem. Find the current through branch AB of the eircuitshown in Fig. 2 above by applying Superposition Theorem.[8]

Q7) a) Define the temperature coefficient of resistance of a material and state its unit.
b) Explain the construction and working of atead Acid Battery with the help of suitable diagram and chempal equations.
c) An electric kettle is required to heat 5 liters of water from $15^{\circ} \mathrm{C}$ to $96^{\circ} \mathrm{C}$ in 30 minutes. Find the input power of the kettle assuming the efficiency of $80 \%$. If the kettle operates on 230 V mains, find the resistance of the heating element. Assume the specific heat capacity of water to be $4200 . \mathrm{J} / \mathrm{kg}$. K and 1 liner of water as equivalent to a mass of 1 kg .
[8]

Q8) a) Write your choice of either a lead acid battery or a lithium ion batteryfor the following applications:
i) Mobile phone
ii) Electric bike
iii) Conventional petroleum vehicle
b) An electric motor runs at 500 rpm while producing torque of 20 Nm . The motor operates at efficiency of $85 \%$. Find motor input power and current drawn when the motor is fed from 230 V DCsupply.
[6]
c) Define insulation resistance and derive the expression for insulation resistance of a single core cable.

## 102

