First Year Engineering (All Branches) BASIC ELECTRICAL ENGINEERING (2019 Pattern) (Semester - I) (103004)

Time : 1 Hour]
[Max. Marks : 30

Instructions to the camaidates

1) Solve Q.T or Q.2, Q. 3 or Q.4.
2) Figures to the right indicate full marks.
3) Neat diagramas must be drawn wherever necessary.
4) Assume suitable additional data, if necessary.
5) Use of non-programmable calculator is allowed.

Q1) a) What is magnetic effect of an electric currentin case of a long straight Coonductor? Hence state right hand thumb rufe.
b) Distinguish between an electric circuit and a magnetic circuit; stating similarities (04 points) and dissimilarities (02 points)
c) Two coils A and B have self-inductances of $10 \mu \mathrm{H}$ and $40 \mu \mathrm{H}$ respectively. A current of 2 A in coil A produces aflux a linkage of $5 \mu \mathrm{~Wb}$-turns in coil B. Calculate:
i) Mutual inductance between the coils
ii) Coefficient of coupling
iii) Average emf induded in coil B if the current of 1 A in coil A is reversed at uniform rate in 0.1 second.

OR
Q2) a) Define Self Induetance by three ways.
b) Obtain the expression for energy stored in magnetio fleld produced by an inductor.
c) An iron ring of mean circumference of 150 cm and erosssectional area 12 cm^{2} is wound with 600 turns of coil. The coil produces flux of 1.25 mWb while carrying a current of 2 A . Find the relative permeability of iron. [6]

Q3) a) Define
i) cycle
ii) period and
iii) frequency of an alternating quantits.
b) Explain the concept of lagging takingstwo electrical quantities with the help of their waveforms and phasor diagrams.
c) Two capacitors of $2 \mu \mathrm{~F}$ and $8 \mu \mathrm{~F}$ are connected in series across 200 V DC supply.
Find
i) resultant capacitanceaalue
ii) voltage across each capacitor and
iii) charge oneach capacitor.

Q4) a) Obtain an expression for average value of a sinusoidal alternating current.

b) Define the following terms in electrostatics and mention their units.
i) Electric flux density
ii) Electric field strength
iii) Absolute permitivity
c) An alternating current varying sinusoidatly with a frequency of 50 Hz has an rms value of 10 A . Write the expression for instantaneous value of this current quantity and find its value for
i) $\mathrm{t}=0.0015 \mathrm{sec}$
ii) $\quad \mathrm{t}=0.0075 \mathrm{sec}$ after passing through zero and then increasing negatively.

