

[5868-105
 F.E. (Ah Branches)
 103004 : BASIC ELECTRICAL ENGINEERING (2013 Pattern) (Semester - I/II)

Time: $2^{1 ⁄ 2} 2$ Hours]
[Max. Marks : 70

Instructions to the candidates:

1) Solve Q. 1 or Q.Z, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Figures to the right indicate full marks.
3) Neat diagrams must be drawn wherever necessary.
4) Assume suitable additional data, if necessary.
5) Use of non-programmable calculator is allowed.

Q1) a) Define and state the unit of admititance, conductance \& susceptance. Also draw the admittance triangle for inductive circuit.
b) Obtain the expression for current and power, when voltage $v=\mathrm{V}_{\mathrm{m}} \sin$ ωt is applied across purely resistive circuit. Also draw the waveform for voltage, current \& power on common X-axis.
c) The series circuit hasing resistance 5Ω, inductance 0.1 H and capacitance $150 \mu \mathrm{~F}$ is conneoted to 1-phase, $200 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply. Calculate-
i) Inductive reactance XL
ii) Capacitive reactance Xc
iii) Net reactance X
v) Current drawn by the circuit
vi) Power factor
vii) Active power P
viii) Reactivepower Q

OR
Q2) a) Define and state the unit of active, reactive and apparent power in case of single phase circuit. Draw the powertriangle
b) Derive the expression for resonant frequency and comment on impedance, current and power factor in case of series resonance circuit.[6]
c) Derive the expression for power, when voltage $v=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$ is applied across R-L series circuit. Also draw the waveform for voltage, current \& power on common X -axis.

Q3) a) What is phase sequence? State it's aæy two applications.
b) State the relation between :
i) Phase voltage and line voltage
ii) Phase current and line.current in case of balanced delta connected 3 -ph load. Osing above relations, obtain the expressions for 3-ph active power and $3-\mathrm{ph}$ reactive power.
c) A $80 \mathrm{kVA}, 1000 / 250 \mathrm{~V}, 1$-ph 50 Hz transformer has iron loss of 1000 W and coper doss 400 W , when its primary draws current of 50A. Calculate
i) Efficiency at full load and power factor $=0.8$ lag.
ii) Efficiency at half load and power factor $=1$ dag.

OR

Q4) a) What are the losses in the transformer? State the parts in which they $\searrow_{\text {take place. }}$
b) Derive the EMF equation of single phase transformer.
c) Three identical impedance each of $6+j 8 \Omega$ are connected in star across $3-\mathrm{ph}, 415 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. Determine
i) Line voltage
ii) Phase voltage
iii) Phase current and line current
iv) 3-ph active,aeactive and apparent power

Q5) a) Define the practical voltage source \& explainit by means of
i) Symbol of representation
ii) Value of internal resistance
iii) Graphs between V and I
b) Derive the equations to convert Deltaconnected resistive circuit into equivalent Star circuit.
c) For the circuit given in fig 5c, write down the steps to find current through PQ using Superposition Theorem.

Figure 5c
OR
Q6) a) State and explain KCL \& KVL
b) Calculate the current flowing through $6 \Omega(\mathrm{AB})$ for the circuit shown in fig 6b, using Kirchhoff's Laws.

Figure 6b
c) Calculate the current flowing through $6 \Omega(\mathrm{AB})$ for the gincuit shown in question 6b, using Thevenin's Theorem.

Q7) a) Define resistivity of the material \& state the factors on which it depends.
b) Explain construction and working principle of Lithium Ion battery and state it's any two applications.
c) Derive an expression for insulation resistance of a single core cable. Draw the necessary diagram. Also comment on insulation resistance when
i) Two cables are connected in series and
ii) In parallel

OR

Q8) a) Write the name of materials used for anode, cathode and electrolyte in case of Lead Acid Battery. State it's any three applications.
b) If α_{1} and α_{2} are the RTC of a conducting material at $t_{1}^{0} \mathrm{C}$ and $t_{2}^{0} \mathrm{C}$ respectively prove that $\alpha_{2}=\frac{\alpha_{1}}{1+\alpha_{1}\left(t_{2}-t_{1}\right)}$
c) A water pump lifts 12000 litre of water to a height of 15 m per minute. The efficiency of motor and pump is $75 \% \& 80 \%$ respectively. Calculate
i) \propto Input power to motor in kW
(ii) Daily energy consumption ifpump is used 04 hrs a day
iii) Monthly electricity bill as per above daily uses for the month of 30 days at the rate of 10 Rs/unit.

밈

