Total No. of Questions : 8]

P6621

[Total No. of Pages : 3

SEAT No. :

[6181]-184 B.E. (E & TC) FIBER OPTIC COMMUNICATION (2019 Pattern) (Semester - VIII) (404190)

Time : 2¹/₂ Hours] Instructions to the candidates:

[Max. Marks: 70

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data if necessary.

Q1) a) When 3×10^{11} photons each with a wavelength of $9.85 \,\mu\text{m}$ are incident on a photo diode, on average. 1.2×10^{11} electrons are collected at the terminals of the device. Determine the quantum efficiency and the responsivity of the photodiode at $0.85 \,\mu\text{m}$. [6]

b) Explain the detection process in the p-n photodiode. [6]

- c) Define and explain the important performance and compatibility requirements for detectors. [6]
- Q2) a) A p-n photodiode has a quantum efficiency of 50% at a wavelength of 0.9 μ m.

OR

Calculate:

its responsivity at 0.9 µm;

- ii) the received optical power if the mean photocurrent is 10^{-6} A;
- iii) the corresponding number of received photons at this wavelength
- b) Enlist various noises in photodetector. Explain one of them in detail. [6]
- c) With the help of diagram explain working of APD. [6]

P.T.O.

- Let the data rate of 20Mb/s and BER of 10-9 For the receiver PIN **Q3)** a) photodiode operating at 850 nm, the required receiver input signal is -42dBm. The LED is used as a source can couple 50uW(-13dBm) average optical power into a fiber flylead with a 50 µm core diameter. Assume 1dB loss occurs when the fiber all lead is connected to the cable and another 1dB connector loss at the cable-photo detector interface. System margin of 6dB. Let attenuation per km is 3.5dB/km. Estimate link length. [8]
 - Draw and explain Fiber Bragg Grating. b)
 - Explain EDFA in detail. c)
- OR

[6]

[4]

[7]

[10]

Explain Rise time budget. Give equation for the same **Q4)** a) [6]

- A 2×2 biconical tapered fiber coupler has an input optical power level of b) $P_0 = 200$ mW. The output powers at the other three ports are $P_1 = 90$ mW, $P_2 = 85$ mW, and $P_3 = 6.3$ nW. What are the coupling ratio, excess loss, insertion losses, and return loss for this coupler? [8]
- With the help of diagram explain optical Isolator. c)
- Explain SONET structure in details. **Q5)** a) Enlist and explain advantages and applications of SONET. b) With the help of diagram explain AON. [6] c) OR

Explain long haul networks.

- Explain w.r.t. FDDI the following:
 - i) FDDI model
 - Frame structure ii)
 - Ring structure iii)

[6181]-184

2

Enlist widely used optical system test instruments and explain their **Q**7) a) functions. [6] Draw Schematic experimental setup for determining fiber attenuation by **b**) the cutback technique. Explain the same. [6] Explain Dispersion measurement technique in detail. c) [5] OR **Q8)** a) Explain OTDR in detail. [6] Explain Eye diagram test. Define fundamental measurement parameters. [6] b) With the help of diagram explain NA measurement technique. [5] c) 000 9.28.26.29.001 1.20.00 1.3.9.0 PP 18.26.28