\square

Time : 1 Hour]
[Max. Marks: 30
Instructions to the candidates:

1) Answer Q. 1 or Q.2and Q. 3 or Q.4.
2) Draw neat diagrams wherever necessary.
3) Figures to the right indicate full marks.

Q1) a) Derive the fundamental equation for free space propagation.
b) The radiation resistance of an antenna is 72Ω and loss resistance is 8Ω.

c) Explain in details the radiation mechanism of antenna with suitable diagram.

Q2) a) Explain the following characteristics of antenna in detail:
i) Radiation Pattern.
ii) Efficiency
b) A communication link is to be established between two stations using half wavelength antenna for maximum directivity gain 1664. The distance between transmitter and receiver is 100 km and transmitter power is 1 KW . Frequency of operation is $100 \mathrm{MH} / \mathrm{z}_{\text {. What is the maximum power }}$ received by receiver.
c) Explain the different types of antennas.

Q3) a) Give the comparison between co-axial cable and waveguide.
b) What are micro waves. Enlighten on advantages and applications of microwave.
c) Explain the constructional details, advantages and applications of re-entrant type of cavity resonator.

Q4) a) With the help of suitable filed pattern diagram, explain TE10 mode in rectangular waveguide.
b) Explain the Structural details, types and applications of Striplines.
c) \searrow Determine the cut off wavelength, gulide wavelength, the group velocity and phase velocity in rectangular waveguide of breadth 10 cms and having a 2.5 GHz signal propagation in wakeguide with dominant mode.

