B.E. (E\& TC)

RADIATIONAND MICROWAVE THEORY (2019 Pattern).(Semester - VII) (404181)

Time : 1 Hour]
[Max. Marks : 30
Instructions to the candidates:

1) Answer Q. 5 or Q. 2 and Q.3 and Q.4.
2) Draw neat diagrams wherever necessary.
3) Figurs to thexight side indicate full marks.

Q1) a) CAloulate the power density reaching the moon's surface from 1 MW pulse transmitter located on the earth. The antenna gain is 55 db . The xdistance between the moon and earth $4,00,000 \mathrm{~km}$.
b) Explain the following characteristics of antenna in detail :
i) Radiation Pattern
ii) Efficiency
c) Explain the details the radiation mechanism of antenna with suitable diagram.

Q2) a) Derive the fundamental equation for free space propagation.
b) The radiation resistance of an antenna is 72Ω and loss resistance is 8Ω. Calculate directivity in db if power gain is 16.0
c) Enlist the different types of antennas. Explain any two types in detail.[6]

Q3) a) Give the comparison between co-axi21 cable and waveguide.
b) What are micro waves. Enlighten on advantages and applications of microwave.
c) What is cavity resonator. Explain re-entrant type of cavity resonator.[6]

Q4) a) Give the comparison between TE Mode and TM Mode.
b) Explain the Structural details, types and applicationsof Striplines.
c) Anair-filled rectangular waveguide of dimension $8 \times 4 \mathrm{~cm}$ operates in the dominant TE 10 mode.

Find :
i) The cut off frequency
ii) Phase velocity apt operating frequency of 3.5 GHz and
iii) Guide Wavelength

อง.(2)

