Total No. of Questions : 8]

C

P3331

[5670]-600 B.E. (E & TC)

SEAT No. :

[Total No. of Pages : 2

RADIATION & MICROWAVE TECHNIQUES (2015 Course) (Semester - I) (404183) (End Sem.)

<i>Time</i> : 2 ¹	/2 Hours]	[Max. Marks :70
Instructions to the candidates:		
1)	All questions are compulsory.	<u>,</u>
2)	Neat diagrams must be drawn wherever necessary.	0
3)	Figures to the right side indicate full marks.	
<i>4</i>)	Assume suitable data; if necessary.	
5)	Use of calculators is allowed.	
Q1) a)	Define & explain following Antenna parameters	[8]
	(i) Radiation efficiency	
	iii) Directivity (Radiation Patter	ern
b)	Compare infinitesimal dipole, small dipole & Half wa	we dipole using
	following parameters	[6]
	i) Electrical length	
	ii) Current distribution	
	iii) Electric field intensity	8
	iv) Radiation resistance	
	v) Directivity	
	vi) Radiation pattern	2 So
()	For an air filled rectangular wave guide of dimension	ons a-4cms and
0)	b=3 cms Find all the modes which will propagate at 500	00MHz [6]
	OR	
		9
02) a)	Derive fundamental equation for free space to private	n [6]
(\mathbf{y}^2) a)	Derive fundamental equation for free space transmission	
D)	Draw radiation pattern of broad side array and explain prin-	cipie of working.
	Derive expression for null direction, side lobe maxima.	[ð]
• c)	Explain following terms with respect to waveguide.	[6]
	i) Cutoff frequency	
	ii) Dominant mode	
	iii) Phase velocity	
	9°.V	<i>P.T.O.</i>

- Q3) a) Draw & explain two hole directional coupler? Also derive s-matrix for it? [6]
 - b) With the help of neat diagram, s-matrix & properties explain H plane Tee? [8]
 - c) Explain the operation of isolator.
- Q4) a) Explain faraday's rotation principle. Explain in brief the working principle of nonreciprocal 3 port circulator? [6]
 - b) Explain applications of Magic tee.
 - c) With near schematic diagram explain the operation of Gyrator. Also state S matrix for it. [6]
- Q5) a) What are linear beam tubes? Explain construction, operation, & applications of two cavity klystron? [8]

b) Explain in detail construction, operation, equivalent circuit & applications of PIN diode? [8]

- Q6) a) Discuss the limitations of conventional tubes at microwave frequencies and how to overcome these limitations? [8]
 - b) Write a short note on Schottky Barrier Diode, also explain difference between P-N junction diode and Schottky Barrier Diode. [8]
- *Q*7) a) Explain Microwave Terrestrial Communication System. Also differentiate between Satellite and Terrestrial Communication System. [8]
 - b) Explain any two methods for measuring impendance of a terminating load in a microwave system? [8]

Q8) a) Write short note on;

[10]

[4]

[6]

- i) Effect of microwave radiations on human.
- ii) Applications of Microwaves.
- b) Calculate Standing Wave Ratio of a transmission system operating at a 10GHz. Assume TE10 wave transmitting inside a wave guide of dimensions a=4cm & b=2.5cm. Distance between twice minima power points is 1mm on slotted line. [6]

()

OR