

Instructions to the candidates:

1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6 and Q7 and Q8.
2) Neat diagrams and Waveforms must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of nonprogrammable calculator is allowed.
5) Assume suitable data if necessary.

Q1) a) Explain working of single phase haiff bridge inverter (using MOSFET/ IGBT) for R-L load with input \& output waveforms.
b) Single phase full bridge inverter is operated from 50 V dc supply, it has a resistive load of $\mathrm{R}=5 \Omega$. Find:
i) RMS o/p voltages at third \& fifth harmonic $\left(\mathrm{V}_{\mathrm{O} 3} \& \mathrm{~V}_{\mathrm{O} 5}\right)$
ii) Distortion factor (DF) of $3^{\text {rd }}$ harmonic component
iii) Total Harmonic Distortion (THD)
c) Distinguish between freewheeling diode with feedback diode.

Q2) a) What is mean by harmonics in inverters? Explain effects of harmonics.[5]
b) Draw a three phaseinverter for balanced star R load? Explain itsóperation of 180° mode with gate signals \& output waveforms.
[12]

Q3) a) Explain working of step down chopper for R load and derive an expression
for its average o / p voltage?
[6]
b) Explain with block schematic working of SMPS.
c) A step down chopper is operated from dcsupply voltage of 230V. It has resistive load with $\mathrm{R}=10 \Omega$. If duty cycle is 40%, calculate :
i) Average \& rms o/p voltages
ii) Average \& rms o/p currents
iii) Chopper efficiency

Q4) a) A step up chopper is operated from 220 V dc supply and it provides 550 V output. If chopping frequency is 1 KHz , calculate ON \& Off times of chopper.
b) What are various types of choppers? Explain operation of two quadrant chopper with circuit diagem.
c) Draw circuit diagram of step up chopper and distinguish between step up \& step down choppers.

Q5) a) Whatare different over voltage protection techniques in power electronics? Explain appone in detail.
b) Why isglation is required in power electronic circuits? Explain with neat diagram working of isolation transformer.
c) Eor a thyristor, Maximum junction temperature is $150^{\circ} \mathrm{C}$. The thermal cresistances are $\emptyset_{\mathrm{JC}}=0.16^{\circ} \mathrm{C} / \mathrm{W}, \emptyset_{\mathrm{C}} \breve{S}^{\circ} 0.08^{\circ} \mathrm{C} \mathbf{\mathrm { W }}$. for heat sink temperature of $60^{\circ} \mathrm{C}$, calculate total average power lossin thryistor - sink combination.

If heat sink temperature is reduced to $50{ }^{\circ} \mathrm{C}$, find new total average power loss in thryistor - sink combination.

Q6) a) What is resonant converter? What are its various types? Explain any one resonant converter with circuit $\&$ waveforms.
b) What is EMI? Explain various sources \& minimizing techniques of EMI.
c) Explain the role of heat sink in power electronic circuits with its thermal equivalent circuit.

Q7) a) Explain with circuit diagram single phase full wave AC yoltage controller for R-load. Also draw following waveformis?
i) Input voltage
ii) Gate signals for power devices
iii) Output voltage
iv) Output current
b) What is UPS? Explain operation of Offline UPS with block schematic.[6]
c) Explain with suitable circuit diagram working of a LED driver.

Q8) a) Explain various performance parameters of batteries used in battery operated power systems.
b) Explain with diagramarchitecture of EVs battery charger.
c) Explain working of ellectronic ballast with block schematic.

