Time: $2^{1 ⁄ 2}$ Hours]
[Max. Marks: 70
Instructions to the candiattes:

1) Answer Q.1 or Q.2, Q.3 or Q.4, Q. 5 or Q.6, Q. 7 or Q8.
2) Neat diagrams and waveforms must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of honprogrammable calculator is allowed.
5) Assume suitable data, if necessary.

Q1) a) HQw feedback diodes differ from freewheeling diodes
b) \searrow Explain working of single phase fill bridge inverter (using MOSFET/ I GBT) for R -L load with input \&-output waveforms.
c) Single phase full bridge inverter is operated from 100 V dc supply, it has a resistive load of $\mathrm{R}=10 \Omega$. Find:
i) rms o/p voltages at third \& fifth harmonic $\left(\mathrm{V}_{03} \& \mathrm{~V}_{05}\right)$
ii) Distortion factor (DP) of $3^{\text {rd }}$ harmonic component
iii) Total harmonicddistortion (THD)
OR

Q2) a) What are PWM techniques in inverter? Explainany onePWM technique with waveforme.
b) Draw a three phase inverter for balanced star R load? Explain its operation of 120° mode with gate signals \& output wavefərms.

Q3) a) Explain with block schematic working of SMPS.
b) A step down chopper is operated from dc supply voltage of 230 V . It has resistive load with $\mathrm{R}=10 \Omega$ When chopper operates, voltage drop across chopper is 2 V . If dut cycle is 40%, Calculate:
i) Average \& A) s o/ yoltages
ii) Average \& rms.o/p currents
iii) Chopper efficiency.
c) Explain with diagrams various control techniques in DC chopper operation.

Q4) a) Explaín with circuit diagram operation of step, up chopper and derive an expression for its o/p voltage : Vo $\frac{V s}{(1-B)}$ Where D is duty cycle. [8]
b) Explain operation of four quadrant chopper with circuit diagram.
c) A step up chopper is operatea from 200 V dc supply and it provides 360 V output. If chopping freqtencyis 5 KHz , calculate ON \& Off times of chopper.

Q5) a) What are different over current protection techniques in power electronkes? Explain any one in detaif.
b) Why isolation is vequired in power electronic circuits? Explain with neat diagram working of isolation transformer.
c) For a thyristor, Maximum junction temperature is $180^{\circ} \mathrm{C}$. The thermal resistances are $\varnothing_{\mathrm{jc}}=0.16^{\circ} \mathrm{C} / \mathrm{W}, \varnothing_{\mathrm{cs}}=0.08^{\circ} \mathrm{C} / \mathrm{w}$ 。for heat sink temperature of $70^{\circ} \mathrm{C}$, calculate total average power loss in thityistor - sink combination. If heat sink temperature is reduced to $50^{\circ} \mathrm{C}$, find new total average power loss in thryistor - sink combination.

Q6) a) What is the need of resonant converter? Explain ZVS resonant converter with circuit \& waveforms.
b) Why heatsink is used in power electronic circuits? Draw its thermal equivalent circuit.
c) What are various EMC,stanards? Explain any two.

Q7) a) What is UPS? What are its types? Explain operation of any one UPS with block sehematic.

b) Explaimworking of electronic ballast with block schematic.
c) Why driver is required for LED lamp? Explain with suitable circuit diagram *working of a LED lamp drive.

Q8) a) Explain single phase full converter drive for single phase separately excited dc motor.
b) Explain with neat diagram BLDC drive.
c) Explain various perrormance parameters of batteries used in battery operated power systems.

